Impact of DNA Extraction Methods on Quantitative PCR Telomere Length Assay Precision in Human Saliva Samples

Authors

  • Dana L Smith Department of Biochemistry and Biophysics, University of California, San Francisco https://orcid.org/0000-0001-9791-6688
  • Calvin Wu Department of Biochemistry and Biophysics, University of California, San Francisco
  • Steve Gregorich Department of Medicine, University of California, San Francisco
  • Guorui Dai Department of Biochemistry and Biophysics, University of California, San Francisco https://orcid.org/0000-0003-3336-6941
  • Jue Lin Department of Biochemistry and Biophysics, University of California, San Francisco

DOI:

https://doi.org/10.21467/ijm.1.1.5784

Abstract

Telomere length (TL) has emerged as a promising replicative cellular aging marker that reflects both genetic and non-genetic influences. Quantitative PCR (qPCR) TL measurement has been favored as a cost-effective method that can be easily implemented, especially in population studies with limited quantities of source material. However, several recent reports have revealed inconsistencies in telomere length measurements when applying different DNA extraction methods to the same source material. In this study we tested three DNA extraction methods on saliva samples from 48 participants of the National Growth and Health Study (NGHS) collected with DNA Genotek’s Oragene kit. The chosen extraction kits represent three distinct approaches to genomic DNA extraction from lysed cells and we employed two different operators to carry out all assays on the same samples. We measured DNA yield and quality and calculated the between-operator agreement of qPCR TL measurements (intraclass correlation, ICC). Our analyses showed that while both QIAamp and Agencourt DNAdvance had higher agreement between the 2 operators (ICC=0.937, CI [0.891, 0.965] and ICC=0.95, CI [0.911, 0.972] respectively), compared to PrepIT kit (ICC=0.809, CI [0.678, 0.889]), QIAamp extracted DNA samples were notably degraded. Using generalizability theory, we found that the participant-by-extraction-method interaction explained about 10% of total variation in TL, suggesting that TL differences across methods are somewhat participant-specific. Therefore, our results suggest that the among the three DNA extraction methods tested, Agencourt (magnetic bead purification) is the preferred kit, and we also strongly recommend against combining different extraction methods within a study population.

Keywords:

qPCR telomere length measurement, DNA extraction, Assay precision

Downloads

Download data is not yet available.

References

Ahmed, W., & Lingner, J. (2018). PRDX1 and MTH1 cooperate to prevent ROS-mediated inhibition of telomerase. Genes & Development, 32(9–10), 658–669. https://doi.org/10.1101/GAD.313460.118

Aviv, A., & Shay, J. W. (2018). Reflections on telomere dynamics and ageing-related diseases in humans. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1741). https://doi.org/10.1098/RSTB.2016.0436

Baerlocher, G. M., Vulto, I., de Jong, G., & Lansdorp, P. M. (2006). Flow cytometry and FISH to measure the average length of telomeres (flow FISH). Nature Protocols 2006 1:5, 1(5), 2365–2376. https://doi.org/10.1038/nprot.2006.263

Blackburn, E. H. (2001). Switching and Signaling at the Telomere. Cell, 106(6), 661–673. https://doi.org/10.1016/S0092-8674(01)00492-5

Blackburn, E. H., Epel, E. S., & Lin, J. (2015). Human telomere biology: A contributory and interactive factor in aging, disease risks, and protection. Science, 350(6265), 1193–1198. https://doi.org/10.1126/SCIENCE.AAB3389

Brennan, R. L. (2001). Generalizability Theory. Springer New York. https://doi.org/10.1007/978-1-4757-3456-0

Broer, L., Codd, V., Nyholt, D. R., Deelen, J., Mangino, M., Willemsen, G., Albrecht, E., Amin, N., Beekman, M., de Geus, E. J. C., Henders, A., Nelson, C. P., Steves, C. J., Wright, M. J., de Craen, A. J. M., Isaacs, A., Matthews, M., Moayyeri, A., Montgomery, G. W., … Boomsma, D. I. (2013). Meta-analysis of telomere length in 19 713 subjects reveals high heritability, stronger maternal inheritance and a paternal age effect. European Journal of Human Genetics 2013 21:10, 21(10), 1163–1168. https://doi.org/10.1038/ejhg.2012.303

Cawthon, R. M. (2002). Telomere measurement by quantitative PCR. Nucleic Acids Research, 30(10), e47–e47. https://doi.org/10.1093/NAR/30.10.E47

Cawthon, R. M. (2009). Telomere length measurement by a novel monochrome multiplex quantitative PCR method. Nucleic Acids Research, 37(3), e21–e21. https://doi.org/10.1093/NAR/GKN1027

Chan, S. W.-L., & Blackburn, E. H. (2002). New ways not to make ends meet: telomerase, DNA damage proteins and heterochromatin. Oncogene 2002 21:4, 21(4), 553–563. https://doi.org/10.1038/sj.onc.1205082

Cheng, F., Carroll, L., Joglekar, M. v., Januszewski, A. S., Wong, K. K., Hardikar, A. A., Jenkins, A. J., & Ma, R. C. W. (2021). Diabetes, metabolic disease, and telomere length. The Lancet Diabetes & Endocrinology, 9(2), 117–126. https://doi.org/10.1016/S2213-8587(20)30365-X

de Meyer, T., Nawrot, T., Bekaert, S., de Buyzere, M. L., Rietzschel, E. R., & Andrés, V. (2018). Telomere Length as Cardiovascular Aging Biomarker: JACC Review Topic of the Week. Journal of the American College of Cardiology, 72(7), 805–813. https://doi.org/10.1016/J.JACC.2018.06.014

DNA Genotek. Saliva collection kits for high-quality DNA saliva samples enabling genetic diagnostics. DNA Genotek’s Oragene Kit . Retrieved January 27, 2023, from https://www.dnagenotek.com/US/products/collection-human/collection-kits-for-diagnostics.html

Eisenberg, D. T. A. (2016). Telomere length measurement validity: the coefficient of variation is invalid and cannot be used to compare quantitative polymerase chain reaction and Southern blot telomere length measurement techniques. International Journal of Epidemiology, 45(4), 1295–1298. https://doi.org/10.1093/IJE/DYW191

Factor-Litvak, P., Susser, E., & Aviv, A. (2017). Environmental Exposures, Telomere Length at Birth, and Disease Susceptibility in Later Life. JAMA Pediatrics, 171(12), 1143–1144. https://doi.org/10.1001/JAMAPEDIATRICS.2017.3562

Factor-Litvak, P., Susser, E., Kezios, K., McKeague, I., Kark, J. D., Hoffman, M., Kimura, M., Wapner, R., & Aviv, A. (2016). Leukocyte telomere length in newborns: Implications for the role of telomeres in human disease. Pediatrics, 137(4). https://doi.org/10.1542/PEDS.2015-3927

Fang, L., Liu, Q., Monteys, A. M., Gonzalez-Alegre, P., Davidson, B. L., & Wang, K. (2022). DeepRepeat: direct quantification of short tandem repeats on signal data from nanopore sequencing. Genome Biology, 23(1), 1–27. https://doi.org/10.1186/S13059-022-02670-6

Fouquerel, E., Barnes, R. P., Uttam, S., Watkins, S. C., Bruchez, M. P., & Opresko, P. L. (2019). Targeted and Persistent 8-Oxoguanine Base Damage at Telomeres Promotes Telomere Loss and Crisis. Molecular Cell, 75(1), 117-130.e6. https://doi.org/10.1016/J.MOLCEL.2019.04.024

Haycock, J. (2017). Estimating Ten-Year Trends in Septic Shock Incidence and Mortality in United States Academic Medical Centers Using Clinical Data: Kadri SS, Rhee C, Strich JR, et al. Chest 2017;151(2):278-285. The Journal of Emergency Medicine, 53(1), 153. https://doi.org/10.1016/J.JEMERMED.2017.05.010

Jose, S. S., Bendickova, K., Kepak, T., Krenova, Z., & Fric, J. (2017). Chronic inflammation in immune aging: Role of pattern recognition receptor crosstalk with the telomere complex? Frontiers in Immunology, 8(SEP), 1078. https://doi.org/10.3389/FIMMU.2017.01078

Kimura, M., Stone, R. C., Hunt, S. C., Skurnick, J., Lu, X., Cao, X., Harley, C. B., & Aviv, A. (2010). Measurement of telomere length by the Southern blot analysis of terminal restriction fragment lengths. Nature Protocols 2010 5:9, 5(9), 1596–1607. https://doi.org/10.1038/nprot.2010.124

Lai, T. P., Wright, W. E., & Shay, J. W. (2018). Comparison of telomere length measurement methods. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1741). https://doi.org/10.1098/RSTB.2016.0451

Lee, M., Napier, C. E., Yang, S. F., Arthur, J. W., Reddel, R. R., & Pickett, H. A. (2017). Comparative analysis of whole genome sequencing-based telomere length measurement techniques. Methods, 114, 4–15. https://doi.org/10.1016/J.YMETH.2016.08.008

Lin, J., & Epel, E. (2022). Stress and telomere shortening: Insights from cellular mechanisms. Ageing Research Reviews, 73, 101507. https://doi.org/10.1016/J.ARR.2021.101507

Lin, J., Smith, D. L., Esteves, K., & Drury, S. (2019). Telomere length measurement by qPCR – Summary of critical factors and recommendations for assay design. Psychoneuroendocrinology, 99, 271–278. https://doi.org/10.1016/J.PSYNEUEN.2018.10.005

Lindrose, A. R., McLester-Davis, L. W. Y., Tristano, R. I., Kataria, L., Gadalla, S. M., Eisenberg, D. T. A., Verhulst, S., & Drury, S. (2021). Method comparison studies of telomere length measurement using qPCR approaches: A critical appraisal of the literature. PLOS ONE, 16(1), e0245582. https://doi.org/10.1371/JOURNAL.PONE.0245582

Poon, S. S., & Lansdorp, P. M. (2001). Quantitative Fluorescence In Situ Hybridization (Q-FISH). Current Protocols in Cell Biology, 12(1), 18.4.1-18.4.21. https://doi.org/10.1002/0471143030.CB1804S12

Ridout, K. K., Levandowski, M., Ridout, S. J., Gantz, L., Goonan, K., Palermo, D., Price, L. H., & Tyrka, A. R. (2017). Early life adversity and telomere length: a meta-analysis. Molecular Psychiatry 2018 23:4, 23(4), 858–871. https://doi.org/10.1038/mp.2017.26

Ruiz, A. ;, Flores-Gonzalez, J. ;, Buendia-Roldan, I. ;, Chavez-Galan, L., Ruiz, A., Flores-Gonzalez, J., Buendia-Roldan, I., & Chavez-Galan, L. (2021). Telomere Shortening and Its Association with Cell Dysfunction in Lung Diseases. International Journal of Molecular Sciences 2022, Vol. 23, Page 425, 23(1), 425. https://doi.org/10.3390/IJMS23010425

Schneider, C. v., Schneider, K. M., Teumer, A., Rudolph, K. L., Hartmann, D., Rader, D. J., & Strnad, P. (2022). Association of Telomere Length With Risk of Disease and Mortality. JAMA Internal Medicine, 182(3), 291–300. https://doi.org/10.1001/JAMAINTERNMED.2021.7804

Shalev, I., Entringer, S., Wadhwa, P. D., Wolkowitz, O. M., Puterman, E., Lin, J., & Epel, E. S. (2013). Stress and telomere biology: A lifespan perspective. Psychoneuroendocrinology, 38(9), 1835–1842. https://doi.org/10.1016/J.PSYNEUEN.2013.03.010

Shavelson, R. J., & Webb, N. M. (1991). Generalizability theory : a primer (Vol. 1). Sage Publications.

Tham, C. Y., Poon, L. F., Yan, T. D., Koh, J. Y. P., Ramlee, M. K., Teoh, V. S. I., Zhang, S., Cai, Y., Hong, Z., Lee, G. S., Liu, J., Song, H. W., Hwang, W. Y. K., Teh, B. T., Tan, P., Xu, L., Koh, A. S., Osato, M., & Li, S. (2023). High-throughput telomere length measurement at nucleotide resolution using the PacBio high fidelity sequencing platform. Nature Communications 2023 14:1, 14(1), 1–13. https://doi.org/10.1038/s41467-023-35823-7

Verhulst, S., Susser, E., Factor-Litvak, P. R., Simons, M. J. P., Benetos, A., Steenstrup, T., Kark, J. D., & Aviv, A. (2015). Commentary: The reliability of telomere length measurements. International Journal of Epidemiology, 44(5), 1683–1686. https://doi.org/10.1093/IJE/DYV166

Wang, Q., Codd, V., Raisi-Estabragh, Z., Musicha, C., Bountziouka, V., Kaptoge, S., Allara, E., Angelantonio, E. di, Butterworth, A. S., Wood, A. M., Thompson, J. R., Petersen, S. E., Harvey, N. C., Danesh, J. N., Samani, N. J., & Nelson, C. P. (2021). Shorter leukocyte telomere length is associated with adverse COVID-19 outcomes: A cohort study in UK Biobank. EBioMedicine, 70, 103485. https://doi.org/10.1016/J.EBIOM.2021.103485

Willis, M., Reid, S. N., Calvo, E., Staudinger, U. M., & Factor-Litvak, P. (2018). A scoping systematic review of social stressors and various measures of telomere length across the life course. Ageing Research Reviews, 47, 89–104. https://doi.org/10.1016/J.ARR.2018.07.006

Downloads

Additional Files

Published

2022-12-27

Issue

Section

Article

How to Cite

[1]
D. L. Smith, C. Wu, S. Gregorich, G. Dai, and J. Lin, “Impact of DNA Extraction Methods on Quantitative PCR Telomere Length Assay Precision in Human Saliva Samples”, Int. J. Methodol., vol. 1, no. 1, pp. 44–57, Dec. 2022.

Funding data