Surface Plasmon Resonance in the Development of TGF-β Activators for Cosmeceutical Use


  • Patrycja Ledwoń Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology
  • Fosca Errante Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health – Section of Pharmaceutical Sciences and Nutraceutics, University of Florence
  • Feliciana Real Fernández CNR – Istituto di Chimica dei Composti Organometallici (CNR-ICCOM), Sesto Fiorentino
  • Paolo Rovero University of Florence
  • Rafał Latajka Faculty of Chemistry, Wroclaw University of Science and Technology, Wrocław



Research on new compounds that can improve the skin's condition is no longer focused exclusively on drugs, but is also adequate for cosmeceuticals – cosmetic products with thoroughly tested and scientifically proven biological activity. One of the most important stimulators of collagen biosynthesis is the so-called Transforming Growth Factor-β (TGF-β). Measuring the activation of latent TGF-β and quantification of its efficacy using the Surface Plasmon Resonance (SPR) technique is a great alternative to the currently used Enzyme-linked Immunosorbent Assay (ELISA) method. In this article, the complex process of TGF-β activation and the methods of its quantification are described. SPR was investigated as a relevant method for the TGF-β activity detection. Optimization of measurement conditions is presented, comparing results of antibody immobilization efficacy in different buffers. Two types of antibodies were immobilized onto the SPR chip, and after choosing one of them the selectivity of capturing between active and inactive TGF-β was confirmed. SPR is discussed as a technique with great potential in cosmeceutical design, in comparison to currently applied quantification methods.


Surface Plasmon Resonance, TGF-beta, Cosmeceuticals


Download data is not yet available.


T. W. Griffiths, R. E. B. Watson, and A. K. Langton, “Skin ageing and topical rejuvenation strategies,” British Journal of Dermatology, vol. 189, no. Supplement_1, pp. i17–i23, Oct. 2023, doi: 10.1093/bjd/ljad282

F. Errante, P. Ledwoń, R. Latajka, P. Rovero, and A. M. Papini, “Cosmeceutical Peptides in the Framework of Sustainable Wellness Economy,” Front. Chem., vol. 8, p. 572923, Oct. 2020, doi: 10.3389/fchem.2020.572923

A. M. Papini, “Cosmetics toward peptide-based cosmeceutics,” chimica oggi/Chemistry Today, vol. 28, no. 6, pp. 3–5, Dec. 2010.

F. Errante et al., “Susceptibility of cosmeceutical peptides to proteases activity: Development of dermal stability test by LC-MS/MS analysis,” Journal of Pharmaceutical and Biomedical Analysis, vol. 194, p. 113775, Feb. 2021, doi: 10.1016/j.jpba.2020.113775

P. Ledwoń, F. Errante, A. M. Papini, P. Rovero, and R. Latajka, “Peptides as Active Ingredients: A Challenge for Cosmeceutical Industry,” Chem. Biodiversity, vol. 18, no. 2, p. e2000833, Jan. 2021, doi: 10.1002/cbdv.202000833

D. Żelaszczyk, A. Waszkielewicz, and H. Marona, “Kolagen – struktura oraz zastosowanie w kosmetologii i medycynie estetycznej,” Estetol Med Kosmetol, pp. 14–20, 2012, doi: 10.14320/EMK.2012.003

G. Veit, B. Kobbe, D. R. Keene, M. Paulsson, M. Koch, and R. Wagener, “Collagen XXVIII, a Novel von Willebrand Factor A Domain-containing Protein with Many Imperfections in the Collagenous Domain,” Journal of Biological Chemistry, vol. 281, no. 6, pp. 3494–3504, Feb. 2006, doi: 10.1074/jbc.M509333200

K. Smith and M. J. Rennie, “New approaches and recent results concerning human-tissue collagen synthesis:,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 10, no. 5, pp. 582–590, Sep. 2007, doi: 10.1097/MCO.0b013e328285d858

P. Ledwoń, A. M. Papini, P. Rovero, and R. Latajka, “Peptides and Peptidomimetics as Inhibitors of Enzymes Involved in Fibrillar Collagen Degradation,” Materials, vol. 14, no. 12, p. 3217, Jun. 2021, doi: 10.3390/ma14123217

N. Khalil, “TGF-beta: from latent to active,” Microbes Infect, vol. 1, no. 15, pp. 1255–1263, Dec. 1999, doi: 10.1016/s1286-4579(99)00259-2

I. B. Robertson and D. B. Rifkin, “Regulation of the Bioavailability of TGF-β and TGF-β-Related Proteins,” Cold Spring Harb Perspect Biol, vol. 8, no. 6, p. a021907, Jun. 2016, doi: 10.1101/cshperspect.a021907

D. Imfeld, E. Jackson, M. Heidl, R. Campiche, E. Wandeler, and H. Ziegler, “Activation of TGF-β: a gateway to skin rejuvenation. Small synthetic peptide mimics natural protein activity in skin to unlock TGF-β potential,” H&PC Today - Household and Personal Care Today, vol. 10, no. 6, pp. 6–11, Dec. 2015.

J. Zhong, N. Hu, X. Xiong, Q. Lei, and L. Li, “A novel promising therapy for skin aging: Dermal multipotent stem cells against photoaged skin by activation of TGF-β/Smad and p38 MAPK signaling pathway,” Medical Hypotheses, vol. 76, no. 3, pp. 343–346, Mar. 2011, doi: 10.1016/j.mehy.2010.10.035

J. E. Murphy-Ullrich and M. J. Suto, “Thrombospondin-1 regulation of latent TGF-β activation: A therapeutic target for fibrotic disease,” Matrix Biol, vol. 68–69, pp. 28–43, Aug. 2018, doi: 10.1016/j.matbio.2017.12.009

S. Schultz-Cherry and J. E. Murphy-Ullrich, “Thrombospondin causes activation of latent transforming growth factor-beta secreted by endothelial cells by a novel mechanism,” J Cell Biol, vol. 122, no. 4, pp. 923–932, Aug. 1993, doi: 10.1083/jcb.122.4.923

S. Schultz-Cherry, S. Ribeiro, L. Gentry, and J. E. Murphy-Ullrich, “Thrombospondin binds and activates the small and large forms of latent transforming growth factor-beta in a chemically defined system,” J Biol Chem, vol. 269, no. 43, pp. 26775–26782, Oct. 1994, doi: 10.1016/S0021-9258(18)47086-X

S. Schultz-Cherry, J. Lawler, and J. E. Murphy-Ullrich, “The type 1 repeats of thrombospondin 1 activate latent transforming growth factor-beta,” J Biol Chem, vol. 269, no. 43, pp. 26783–26788, Oct. 1994, doi: 10.1016/S0021-9258(18)47087-1

S. Schultz-Cherry et al., “Regulation of Transforming Growth Factor-β Activation by Discrete Sequences of Thrombospondin 1,” Journal of Biological Chemistry, vol. 270, no. 13, pp. 7304–7310, Mar. 1995, doi: 10.1074/jbc.270.13.7304

J. Ahamed, C. A. Janczak, K. M. Wittkowski, and B. S. Coller, “In Vitro and In Vivo Evidence that Thrombospondin-1 (TSP-1) Contributes to Stirring- and Shear-Dependent Activation of Platelet-Derived TGF-β1,” PLoS ONE, vol. 4, no. 8, p. e6608, Aug. 2009, doi: 10.1371/journal.pone.0006608

J. E. Nör, L. Dipietro, J. E. Murphy-Ullrich, R. O. Hynes, J. Lawler, and P. J. Polverini, “Activation of Latent TGF-β1 by Thrombospondin-1 is a Major Component of Wound Repair,” Oral Biosci Med, vol. 2, no. 2, pp. 153–161, 2005.

J. Kropf, J. O. Schurek, A. Wollner, and A. M. Gressner, “Immunological measurement of transforming growth factor-beta 1 (TGF-beta1) in blood; assay development and comparison,” Clin Chem, vol. 43, no. 10, pp. 1965–1974, Oct. 1997.

I. Areström, B. Zuber, T. Bengtsson, and N. Ahlborg, “Measurement of human latent transforming growth factor-β1 using a latency associated protein-reactive ELISA,” Journal of Immunological Methods, vol. 379, no. 1–2, pp. 23–29, May 2012, doi: 10.1016/j.jim.2012.02.016

S. A. Khan, J. Joyce, and T. Tsuda, “Quantification of active and total transforming growth factor-β levels in serum and solid organ tissues by bioassay,” BMC Res Notes, vol. 5, no. 1, p. 636, Dec. 2012, doi: 10.1186/1756-0500-5-636

H. Hayrapetyan, T. Tran, E. Tellez-Corrales, and C. Madiraju, “Enzyme-Linked Immunosorbent Assay: Types and Applications,” in ELISA, R. S. Matson, Ed., in Methods in Molecular Biology, vol. 2612. New York, NY: Springer US, 2023, pp. 1–17. doi: 10.1007/978-1-0716-2903-1_1. Available: [Accessed: Apr. 09, 2024]

H. Nguyen, J. Park, S. Kang, and M. Kim, “Surface Plasmon Resonance: A Versatile Technique for Biosensor Applications,” Sensors, vol. 15, no. 5, pp. 10481–10510, May 2015, doi: 10.3390/s150510481

R. B. M. Schasfoort, “Introduction to Surface Plasmon Resonance,” in Handbook of Surface Plasmon Resonance, R. B. M. Schasfoort, Ed., 2nd ed.The Royal Society of Chemistry, 2017, pp. 1–26. doi: 10.1039/9781788010283-00001. Available: [Accessed: Mar. 10, 2024]

Z. Huo, Y. Li, B. Chen, W. Zhang, X. Yang, and X. Yang, “Recent advances in surface plasmon resonance imaging and biological applications,” Talanta, vol. 255, p. 124213, Apr. 2023, doi: 10.1016/j.talanta.2022.124213

J. Xu, P. Zhang, and Y. Chen, “Surface Plasmon Resonance Biosensors: A Review of Molecular Imaging with High Spatial Resolution,” Biosensors, vol. 14, no. 2, p. 84, Feb. 2024, doi: 10.3390/bios14020084

D. G. Drescher and M. J. Drescher, “Protein Interaction Analysis by Surface Plasmon Resonance,” in Advanced Methods in Structural Biology, Â. Sousa and L. Passarinha, Eds., in Methods in Molecular Biology, vol. 2652. New York, NY: Springer US, 2023, pp. 319–344. doi: 10.1007/978-1-0716-3147-8_19. Available: [Accessed: Apr. 09, 2024]

G. A. Zingale, A. Distefano, and G. Grasso, “The Use of Surface Plasmon Resonance to Study the Interactions ofProteins Involved in Conformational Diseases: Experimental Approaches for New Therapeutical Perspectives,” CMC, vol. 30, no. 36, pp. 4072–4095, Nov. 2023, doi: 10.2174/0929867330666230116162646

M. S. Møller, D. W. Cockburn, and C. Wilkens, “Surface Plasmon Resonance Analysis for Quantifying Protein–Carbohydrate Interactions,” in Carbohydrate-Protein Interactions, D. W. Abbott and W. F. Zandberg, Eds., in Methods in Molecular Biology, vol. 2657. New York, NY: Springer US, 2023, pp. 141–150. doi: 10.1007/978-1-0716-3151-5_10. Available: [Accessed: Apr. 09, 2024]

J. Tan, Y. Chen, J. He, L. G. Occhipinti, Z. Wang, and X. Zhou, “Two-dimensional material-enhanced surface plasmon resonance for antibiotic sensing,” Journal of Hazardous Materials, vol. 455, p. 131644, Aug. 2023, doi: 10.1016/j.jhazmat.2023.131644

F. Ranjbari, A. Nosrat, F. Fathi, and A. Mohammadzadeh, “Surface plasmon resonance biosensors for early troponin detection,” Clinica Chimica Acta, vol. 558, p. 118670, May 2024, doi: 10.1016/j.cca.2024.118670

S. H. Lee, J. H. Back, H. J. Joo, D.-S. Lim, J. E. Lee, and H. J. Lee, “Simultaneous detection method for two cardiac disease protein biomarkers on a single chip modified with mixed aptamers using surface plasmon resonance,” Talanta, vol. 267, p. 125232, Jan. 2024, doi: 10.1016/j.talanta.2023.125232

V. R. Kumar, N. C. Kampan, N. H. Abd Aziz, C. K. Teik, M. N. Shafiee, and P. S. Menon, “Recent Advances in Surface Plasmon Resonance (SPR) Technology for Detecting Ovarian Cancer Biomarkers,” Cancers, vol. 15, no. 23, p. 5607, Nov. 2023, doi: 10.3390/cancers15235607

M. Trzaskowski et al., “Portable Surface Plasmon Resonance Detector for COVID-19 Infection,” Sensors, vol. 23, no. 8, p. 3946, Apr. 2023, doi: 10.3390/s23083946

X. Hao, J.-P. St-Pierre, S. Zou, and X. Cao, “Localized surface plasmon resonance biosensor chip surface modification and signal amplifications toward rapid and sensitive detection of COVID-19 infections,” Biosensors and Bioelectronics, vol. 236, p. 115421, Sep. 2023, doi: 10.1016/j.bios.2023.115421

C.-V. Topor, M. Puiu, and C. Bala, “Strategies for Surface Design in Surface Plasmon Resonance (SPR) Sensing,” Biosensors, vol. 13, no. 4, p. 465, Apr. 2023, doi: 10.3390/bios13040465

D. Capelli, V. Scognamiglio, and R. Montanari, “Surface plasmon resonance technology: Recent advances, applications and experimental cases,” TrAC Trends in Analytical Chemistry, vol. 163, p. 117079, Jun. 2023, doi: 10.1016/j.trac.2023.117079




How to Cite

P. Ledwoń, F. Errante, F. Real Fernández, P. Rovero, and R. Latajka, “Surface Plasmon Resonance in the Development of TGF-β Activators for Cosmeceutical Use”, Int. Ann. Sci., vol. 14, no. 1, pp. 1–9, May 2024.

Funding data