Nature-inspired Material – A Step Ahead in Dental Materials

Authors

DOI:

https://doi.org/10.21467/ias.12.1.31-46

Abstract

Glass-ionomer is first choice widely used biomaterial in caries disease. The evolution of dental material science includes insertion of new components into conventional material. A literature-based review outline of biomaterials for dental restorations development was presented in nature-inspired context. This article is a tribute to the entire research community, for all listed and unlisted, involved throughout the ages in the science of dental materials with the key inventions and milestones for humanity well-being on Earth. Results. Since the Neolithic, the human mind has been seeking for a matter to replace missing tooth tissue imitating/mimicking natural organ in appearance and function, what we call biomimetic/biomimicry approach. However, this restoring philosophy does not refer to the natural composition of hard tooth tissues. Possibly, there is another one concept of drawing inspiration from nature for the design of future dental materials. Nature-inspired synthesis goes beyond aesthetic/and anatomical similarities, and delves into the mechanistic, physico-chemical features or structure-phase of natural systems. In this context, pure glass-ionomer might be taken into consideration as a starting material. However, the search for synthetic nature-inspired mesomaterial with a structural-phase composition analogous to enamel/dentine/cementum, transforming into the original host hard tissues, should focus on elongated hydroxyapatite dipole control for creating and organizing into enamel prisms, and the interwoven alignment of perpendicular clusters/bunches in a picket-fence resembling three-dimensional order. The results of previous studies confirming the possibility of the formation of apatite-enamel-like tissue in glass-ionomer are promising. The concept of inclusion of calcium phosphate nanocrystals/substitution of glass filler seems to be forward-looking. The future role of polyelectrolyte organic matrix based on synthetic tooth polypeptides crosslinked with modified analogues of natural adhesives is still undiscovered.

Keywords:

Apatite, Glass Ionomer, Nature Adhesive

Downloads

Download data is not yet available.

References

E. von Bibra. „Chemische Untersuchungen über die Knochen und Zähne des Menschen und der Wirbeltiere“. Schweinfurt, 1844.

ChS Tomes. “A manual of dental anatomy: human and comparative”. Philadelphia, Blakiston son and Co., 1890.

G.G. Simpson. “Enamel on the teeth of an Eocene edentate”. American Museum Natural History; Vol. 21; pp. 21:1-4, 1932

A. Nava, D.W. Frayer, L. Bondioli. “Longitudinal analysis of the microscopic dental enamel defects of children in Imperial Roman community of Portus Rome necropolis of Isola Sacra, (2nd to 4th century CE, Italy)”. Journal Archaeological Science: Reports; Vol. 23: pp. 406-415, 2019.

C.R. Woese, O. Kandler, M. Wheelis. “Towards a natural system of organisms: Proposal for the domains Archea, Bacteria, and Eucarya”. Proceedings of the National Academy of Science; Vol. 87, No.12: pp. 4576–4579, 1990.

R.R. Reisz, D.M. Scott DM, B.R. Pynn, et al. “Osteomyelitis in a Palaeozoic reptile: ancient evidence for bacterial infection and its evolutionary significance”. Naturwissenschaften; Vol. 98, No. 6: pp. 551–555, 2011.

G.M. Stampfli, C. Hochard,C. Verard, et al.“ The formation of Pangea”. Tectonophysics; Vol. 593, No. 8: pp. 1–19, 2013.

L.T. Humphrey, I. De Groote, J. Morales, et al. “Earliest evidence for caries and exploitation of starchy plant foods in Pleistocene hunter-gatherers from Morocco”. Proceedings of the National Academy of Science; Vol. 111, No. 3: pp. 954–959, 2014.

D.G. Purton, J.C. Rodda. “Artificial caries around restorations in roots”. Journal of Dental Research; Vol. 67, No. 1: pp. 817–821, 1988.

Y. Takahashi, S. Imazato, A.V. Kaneshiro, et al. “Antibacterial effects and physical properties of glass-ionomer cements containing chlorhexidine for the ART approach”. Dental Materials; Vol. 22, No. 7: pp. 647–652, 2006.

J.F. McCabe, Z. Yan, O.T.A’ Naimi, et al.” Smart materials in dentistry”. Australian Dental Journal; Vol. 56, No. 1: pp. 3–10. 6, 2011.

J. Mungara, J. Philip, E. Joseph, et al. « Comparative evaluation of fluoride release and recharge of pre-reacted glass ionomer composite and nanoionomeric glass ionomer with daily fluoride exposure: an in vitro study”. Journal of the Indian Society of Pedodontics and Preventive Dentistry; Vol. 31, No. 4: pp. 234–239, 2013.

J.E. Frencken.” Evolution of the ART approach: highlights and achievements “. Journal of Applied Oral Science; Vol. 17: pp. 78-83, 2009.

H. Grapow, H. von Deines. “Grundriss der Medizin der Alten Ägypter”. Berlin, Akademie-Verlag; 1954–1973.

J. Linderer. “Die Zahneilkunde nach ihrem neusten Standpunkte”. Berlin; 1851.

S. Sorel. “Procedure for the formation of very solid cement by the action of chloride on the oxide of zinc”. Comptes Rendus Hebdomadaires Seances de l’Acadèmie des Sciences; Vol. 41: pp. 784–785, 1855.

D.C. Smith. “A new dental cement”. British Dental Journal; Vol. 124, No. 9: pp. 381–384, 1968.

A.D. Wilson, R.F. Batchelor. “Dental silicate cements I. The chemistry of erosion”. Journal of Dental Research 1967; 46:1078–85.

A.D. Wilson, B.E. Kent. “Surgical cement”. British Patent; Vol. 1: p. 316, 1969.

A.D. Wilson, B.E. Kent. “The Glass-Ionomer Cement, a new Translucent Dental Filling Material”. Journal of Applied Chemistry and Biotechnology; Vol. 21, No. 11: p. 31, 1971.

A.D. Wilson, B.E. Kent. “A new translucent cement for dentistry”. British Dental Journal; Vol. 132, No. 4: pp.133-5, 1972.

J.W. McLean, J.W. Nicholson, A.D. Wilson. “Proposed nomenclature for glass-ionomer dental cements and related materials”. Quintessence International; Vol. 25, pp. 587–589, 1994.

G.J. Mount. “Colour Atlas of Glass Ionomer Cement”. 2nd ed. Martin Dunitz: London, UK, 2002.

ISO 9917–1: “Dental Water Based Cements. International Organization for Standardization: Geneva, Switzerland, 2003.

L.M. Jonck, C.J. Grobbelaar, H. Strating. “The biocompatibility of glass-ionomer cements in joint replacement—bulk testing”. Clinical Materials; Vol. 4: pp. 85–107, 1989.

R.G. Hill, A.D. Wilson, C.P. Warrens. “The influence of polyacrylic acid molecular weight on the fracture toughness of glass-ionomer cements”. Journal of Materials Science; Vol. 24: pp. 363–71, 1989.

R.T. Ramsden, R.C.T. Herdman, R.H. Lye. “Ionomeric bone cement in otoneurological surgery”. Journal of Laryngology and Otology; Vol. 106: pp. 949–53, 1992.

J.W. Nicholson. “Chemistry of glass-ionomer cements: a review”. Biomaterials; Vol. 19: pp. 485–94, 1998.

W. Zollner, C. Rudel. In: Hunt PC, editor. “Glass ionomers: the next generation”. Philadelphia International Symposium in Dentistry; pp. 57–60, 1994.

D.K. Dickey, S. Kehoe, D. Boyd. “Novel adaptations to zinc–silicate glasspolyalkenoate cements: Then expected influences of germanium-based glasses on handling characteristics and mechanical properties”. Journal of Mechanical Behaviour of Biomedical Materials; Vol. 23: pp. 8–21, 2013.

A. Atan, H. Dere, A.R. Yamur, et al. « Results of ossicular chain reconstruction with glass ionomer cement in paediatric patients”. International Journal of Paediatric Otorhinolaryngology; Vol. 85: pp. 103–106, 2016.

J.W. Nicholson. “Adhesive dental materials–A review”. International Journal of Adhesive Dentistry; Vol. 18: pp. 229–236, 1998.

J.W. Mc Lean, A.D. Wilson. “Fissure sealing and filling with an adhesive glass-ionomer cement”. British Dental Journal; Vol. 136, No. 7: pp. 269-276, 1974.

A.D. Wilson, S. Crisp, B.G. Lewis, et al. “Experimental luting agents based on the glass ionomer cements”. British Dental Journal; Vol. 15: pp. 117–122, 1977.

N.H.F. Wilson. “Direct adhesive materials: current perceptions and evidence–future solutions”. Journal of Dentistry; Vol. 29: pp. 307–316, 2001.

B. Woodfine, J. Clarke, R.W. Billington. “Glass-ionomers and standards”. Journal of Dentistry; Vol. 34: pp. 614–622, 2006.

Y. Wang, B.W. Darvell. „Hertizian load-bearing capacity of ceramic reinforced glass-ionomer cement stored wet and dry”. Dental Materials; Vol. 25, No. 8: pp. 952–955, 2009.

S.M.J. Mortazawi, M. Paknahad, G. Mortazav. “Effect of ionizing radiation on amalgam, composite and zirconomer based restorations”. Journal of Clinical and Diagnostic Research; Vol. 9, No. 11: pp. 1–2, 2015.

W.H. Zachariasen. “The atomic arrangements in glass”. Journal of the American Ceramic Society; Vol. 54: pp. 3841-385, 1932.

B.E. Kent, B.G. Lewis, A.D. Wilson. “Glass-ionomer formulations. 1: The preparation of novel fluoroaluminosilicate glasses high in fluorine”. Journal of Dental Research; Vol. 58: pp. 1607-1619, 1979.

G.J. Mount, O.F. Makinson.” Letter to the editor”. British Dental Journal; Vol. 145: p. 125, 1978.

S. Crisp, B.G. Lewis, A.D. Wilson.” Gelation of polyacrylic acid aqueous solutions and the measurement of viscosity”. Journal of Dental Research; Vol. 54: pp. 1173–5, 1975.

H. Masanori.” Polyelectrolytes. Science and technology”. Marcel Dekker, New York 1993.

S. Crisp, A.D. Wilson. “Cements comprising acrylic and itaconic acid copolymers and fluoroaluminosilicate glass powder”. US Patent; Vol. 1: pp. 532,954, 1975.

M.A. Fareed, A. Stamboulis. “Nanoclay addition to conventional glass-ionomer cements: Influence on properties”. European Dental Journal; Vol. 8: pp. 456–463, 2014.

S. Crisp, A.J. Ferner, B.G. Lewis, A.D. Wilson. “Properties of improved glass-ionomer cement formulations”. Journal of Dentistry; Vol. 3: pp. 125–30, 1975.

S.K. Sidhu, J.W. Nicholson. “A Review of Glass-Ionomer Cements for Clinical Dentistry”. Journal of Functional Biomaterials; Vol. 7, No. 16: pp. 1-15, 2016.

R.W. Billington, J.A. Williams, G.J. Pearson. “Ion processes in glass ionomer cements”. Journal of Dentistry; Vol. 34, No. 8: pp. 544–55, 2006.

S. Crisp, B.G. Lewis, A.D. Wilson. “Characterization of glass-ionomer cements. 5. Effect of tartaric acid in the liquid component”. Journal of Dentistry; Vol. 7: pp. 304–305, 1979.

R.G. Hill, A.D. Wilson. “Some structural aspects of glasses used in ionomer cements”. Glass Technology; Vol. 29: pp. 150–188, 1988.

J.F. Stebbins, S. Kroeker, S.K. Lee, et al. „Quantification of five- and six-coordinated aluminium ions in aluminosilicate and fluoride-containing glasses by high-field, high-resolution Al-27 NMR”. Journal of Non-Crystal Solids; Vol. 275: pp. 1–6, 2000.

A. Stamboulis, R.G. Hill, R.V. Law. “Structural characterization of fluorine-containing glasses by F-19, Al-27, Si-29 and P-31 MAS-NMR spectroscopy”. Journal of Non-Crystal Solids; Vol. 351: pp. 3289–3295, 2005.

R.G. Hill, A. Stamboulis, Law RV. “Characterization of fluorine-containing glasses by F-19, Al-27, Si-29 and P-31 MAS-NMR spectroscopy”. Journal of Dentistry; Vol. 34: pp. 525–534, 2006.

S. Shahid, U. Hassan, R.W. Billington, R.G. Hill, P. Anderson. “Glass ionomer cements: Effect of strontium substitution on aesthetics, radiopacity and fluoride release”. Dental Materials; Vol. 30: pp. 308–313, 2014.

S. Crisp, M.A. Pringuer, D. Wardleworth, A.D. Wilson. “Reactions in glass-ionomer cements: II. An infrared spectroscopic study”. Journal of Dental Research; Vol. 53: pp. 1414–1419, 1974.

M.S.A. Earl, G.J. Mount, W.R. Hume. “Effect of varnishes and other surface treatments on water movement across the glass-ionomer cement surface II”. Australian Dental Journal; Vol. 34: pp. 326-329, 1989.

R. Pires, T.G. Nunes, I. Abrahams, et al. “Stray-field imaging and multinuclear magnetic resonance spectroscopy studies on the setting of a commercial glass-ionomer cement”. Journal of Material Science: Materials in Medicine; Vol. 15: pp. 201–208, 2004.

T. Munhoz, N. Karpukhina N, R.G. Hill, R.V. Law, et al. “Setting of commercial glass ionomer cement Fuji IX by 27Al and 19F MAS-NMR”. Journal of Dentistry; Vol. 38: pp. 325-330, 2010.

E. Widstrom, H. Birn, O. Haugejorden, H. Sundberg. „Fear of amalgam: dentists’ experiences in the Nordic countries”. International Dental Journal; Vol. 42: pp. 65–70, 1992.

R. Pulgar, M.F. Olea-Serrano, A. Novillo-Fertrell A, et al. “Determination of bisphenol-A and related aromatic compounds released from bis-GMA-based composites and sealants by high performance liquid chromatography”. Environmental Health Perspectives; Vol. 108, No. 1: pp. 21–7, 2000.

Y. Imai, M. Watanabe, A. Ohsaki. “Analysis of major components and bisphenol A in commercial Bis-GMA and Bis-GMS-based resins using high performance liquid chromatography”. Dental Materials Journal; Vol. 19, No. 3: pp. 263–9, 2000.

Y. Hashimoto, M. Nakamura. “Estrogenic activity of dental materials and bisphenol-A related chemicals in vitro”. Dental Materials Journal; Vol. 19, No. 3: pp. 245–62, 2000.

H. Forss, E. Widstrom. “From amalgam to composite: selection of restorative materials and restoration longevity in Finland”. Acta Odontologica Scandinavica; Vol. 59: pp. 57–62, 2001.

C.J. Kleverlaan, R.N. van Duinen, A.J. Feilzer. “Mechanical properties of glass ionomer cements affected by curing methods”. Dental Materials; Vol. 20: pp. 45-50, 2004.

S. Schwengberg, H. Bohlen, N. Kleinsasser, et al. „In vitro embryotoxicity assessment with dental restorative materials”. Journal of Dentistry; Vol. 33: pp. 49–55, 2005.

F.X. Reichl, M. Esters, S. Simon, et al. « Cell death effects of resin-based dental material compounds and mercurial in human gingival fibroblast”. Archives of Toxicology; Vol. 80: pp. 370–7, 2006.

C.L. Davidson. “Advances in glass-ionomer cements”. Journal of Applied oral Science; Vol. 14 (sp. issue): pp. 3-9, 2006.

Y.B. Wetherill, B.T. Akingbemi, J. Kanno, et al. “In vitro molecular mechanisms of bisphenol A action”. Reproductive Toxicology; Vol. 24, No. 2: pp. 178-98, 2007.

C.A. Richter, L.S. Birnbaum, F. Farabollini, et al. “In vivo effects of bisphenol A in laboratory rodent studies”. Reproductive Toxicology; Vol. 24, No. 2: pp. 199-224, 2007.

M. Goldberg. “The safety of dental amalgam and alternative dental restoration materials for patients and users”. SCENIHR 2015. Available from: http://ec.europa.eu/health/scientific_committees/emerging/docs/scenihr_o_046.pdf

World Dental Federation.” Dental restorative materials and the Minamata Convention on Mercury. Guidelines for successful implementation”. Available from: http://www.fdiworldental.org/media/54670/minamata-convention_fdiquidelines-for-successful-implementation.pdf.

P. Subramaniam, S. Jayasurya, K.L. Girish Babu. “Evaluation of glass carbomer sealant and a moisture tolerant resin sealant. A comparative study”. International Journal of Dental Science Research; Vol. 2, No. 2: pp. 41-48, 2015.

P. Subramaniam, K.L. Girish Babu, Jayasurya S. “Evaluation of Solubility and Microleakage of Glass Carbomer Sealant”. Journal of Clinical Paediatric Dentistry; 39(5):429-435, 2015.

E. Dursun, H. Fron-Chabouis, J-P Attal, A. Raskin.” Bisphenol A release: survey of composition of dental composite resins”. Open Dental Journal; Vol. 10: pp. 446-453, 2016.

R. Noort. “Introduction to dental materials”. 4th ed. Edinburgh; New York: Mosby Elsevier, 2013.

T.F. Watson, A.R. Atmeh, S. Sajini, R.J. Cook, et al. “Present and future of glass-ionomers and calcium-silicate cements as bioactive materials in dentistry: Biophotonics-based interfacial analyses in health and disease”. Dental Materials; Vol. 30: pp. 50-6, 2014.

K.G. Ngo, G.J. Mount, M.C. Peters. “A study of glass-ionomer cement and its interface with enamel and dentin using a low-temperature, high-resolution scanning electron microscopic technique”. Quintessence International; Vol. 28, No. 1: pp. 63-9, 1997.

R.N. Van Duinen, C.L. Davidson, A. de Gee, et al. “In situ transformation of glass-ionomer into an enamel-like material”. American Journal of Dentistry; Vol. 17, No. 4: pp. 223-7, 2004.

H.C. Ngo, G.J. Mount, J. McIntyre J, et al. “Chemical exchange between glass-ionomer restorations and residual carious dentine in permanent molars: an in vivo study”. Journal of Dentistry; Vol. 34, No. 8: pp. 608-613, 2006.

C.M.C. Lopes de França, J. Galvan, A.C.R. Chibinski, et al. “Fluoride release and surface roughness of a new glass ionomer cement: glass carbomer”. Revista Odontologia UNESP; Vol. 47, No. 1: pp. 1-6, 2018.

D. Xie, W.A. Brantley, B.M. Culbertson, G. Wang. “Mechanical properties and microstructures of glass-ionomer cements”. Dental Materials; Vol. 16: pp. 129-38, 2000.

M.E. Lucas, K. Arita, M. Nishino. “Toughness, bonding and fluoride-release properties of hydroxyapatite-added glass ionomer cement”. Biomaterials; Vol. 24: pp. 3787–3794, 2003.

W.F. van Den Bosch, R.N.B. van Duinen. „Self-Hardening Glass Carbomer composition”. Priority date: 2003.06.05. EP 1628625 (A1). 2006.03.01 20040748628, 2004.

H. Koenraads, G. van der Kroon, J.E. Frencken. „Compressive strength of two newly developed glass-ionomer materials for use with the Atraumatic Restorative Treatment (ART) approach in class II cavities”. Dental Materials; Vol. 25: pp. 551-556, 2009.

Y. Zhu, X. Zhang, Y. Chen, Q Xe, J. Lan, M. Qian, N. He. “A comparative study on the dissolution and solubility of hydroxyapatite and fluorapatite at 25°C and 45°C”. Chemical Geology; Vol. 268, No 1-2: pp. 89-96, 2009.

X. Chen, M. Du, M. Fan, et al. « Effectiveness of two new types of sealants: retention after 2 years”. Clinical Oral Investigations; Vol. 16, No. 5: pp. 1443-50, 2012.

K. Gorseta, D. Glavina, I. Skrinjaric. “Influence of ultrasonic excitation and heat application on the microleakage of glass ionomer cements”. Australian Dental Journal Vol.57: pp. 453-7, 2012.

S. Goenka, R. Balu, T.S. Sampath Kumar. „Effects of nanocrystalline calcium deficient hydroxyapatite incorporation in glass ionomer cements”. Journal of Mechanical Behaviour of Biomedical Materials; Vol. 7: pp. 69-76, 2012.

N. Zainuddin, N. Karpukhina, R.V. Law, R.G. Hill. “Characterisation of remineralizing Glass Carbomer® ionomer cement by MAS-NMR spectroscopy”. Dental Materials; Vol. 28, No. 10: pp. 1051-8, 2012.

U. Menne-Happ, N. Ilie. “Effect of gloss and heat on the mechanical behaviour of glass carbomer cement”. Journal of Dentistry; Vol. 41, No. 3: pp. 223-30, 2013.

Z. Arslanoglu, H. Altan, O. Sahin, M.G. Tekin, et al. “Evaluation of Surface Properties of Four Tooth-Coloured Restorative” Materials. Acta Physica Polonica; Vol. 158, No. 2B: pp. 310-313, 2015.

I.C. Olegário, A.P.V.E.P. Malagrana, A.S.H. Kim, et al. “Mechanical Properties of High-Viscosity Glass Ionomer Cement and Nanoparticle Glass Carbomer”. Journal of Nanomaterials: pp. 1-4, 2015.

E.A. Shebl, W.M. Etman, Th.M. Genaid, et al. “Durability of bond strength of glass-ionomers to enamel”. Tanta Dental Journal; Vol. 12: pp. 16-27, 2015.

H. Altana, F. Bilgic, Z. Arslanoglu, et al. “Nanomechanical Properties of Different Dental Restorative Materials”. Acta Physica Polonica; Vol. 130, No. 1: pp. 394-296, 2016.

M.S. Botsali, U. Tokay, B. Ozme, M. Cortcu, et al. “Effect of new innovative restorative carbomised glass cement on intrapulpal temperature rise: an ex-vivo study”. Brazilian Oral Research; Vol. 30, No. 1: e67, 2016.

C.M.C. Lopes de França, E.W. Schubert, A. Reis, et al. “Analysis of the hardness of a new restorative material for ART: Glass Carbomer”. Revista Odontologia UNESP; Vol. 45, No. 2: pp. 65-70. 2016.

J.W. Nicholson, B. Czarnecka.” Modern glass-ionomer materials of enhanced properties”. In: Materials for the direct restoration of teeth. Duxford: Woodhead: pp. 161-75, 2016.

H.E. Ülker, A.I. Erkan, N. Günaydin N, et al. “Comparison of the mechanical and biological properties of self-adhering materials”. Journal of Adhesion Science and Technology; Vol. 30, No. 10: pp. 1119–1130, 2016.

T. de Caluwe, Ch. Vercruysse, L. Martens. “Mechanical and Bioactive Properties of a Commercial Glass Carbomer: GCP Glass Fill”. Avicenna Journal of Dental Research; Vol. 9, No. 4: e14433, 2017.

M.S. Dogan, F. Demirci, E. Eratilla, et al. “Evaluation of stress distribution of a new restorative material and composite resin: a finite-element analysis study”. Biotechnology and Biotechnological Equipment; Vol. 31, No. 6: pp. 1216–1220, 2017.

G.D. Bayrak, N. Sandalli, S. Selvi-Kuvvetli, N. et al.” Effect of two different polishing systems on fluoride release, surface roughness and bacterial adhesion of newly developed restorative materials”. Journal of Aesthetic Restorative Dentistry; Vol. 29: pp. 424–434, 2017.

T. Burke, R. Crisp, A. James. “Glass carbomer restorative material evaluation”. Dentist; Vol. 5: pp. 82-88, 2017.

M.H.R. Hasan, S.K. Sidhu, J.W. Nicholson. “Fluoride release and uptake in enhanced bioactivity glass ionomer cement (“glass carbomer™”) compared with conventional and resin-modified glass ionomer cements”. Journal of Applied Oral Science; Vol. 27: pp. 1-6, 2019.

J.J. Simmons. “The Miracle Mixture: glass ionomer and alloy powder”. Texas Dentistry; Vol. 100: pp. 6-12, 1983.

J.W. McLean, O. Gasser. “Glass-cermet cements”. Quintessence International; Vol. 16, No. 5: pp. 333-4, 1985.

M. Kobayashi., M. Kon, K. Miyai, K. Asaoka. “Strengthening of glass-ionomer cement by compounding short fibers with CaO–P2O5–SiO2–Al2O3 glass”. Biomaterials; Vol. 21: pp. 2051–8, 2000.

M.E. Lucas, K. Arita., M. Nishino. “Toughness, bonding and fluoride-release properties of hydroxyapatite-added glass ionomer cement”. Biomaterials; Vol. 24, No. 21: pp. 3787–94, 2003.

A.H. Dowling, A. Stamboulis, G.J.P. Fleming. “The influence of montmorillonite clay reinforcement on the performance of a glass ionomer restorative”. Journal of Dentistry; Vol. 34: pp. 802-810, 2006.

A. Moshaverinia, S. Ansari, Z. Movasaghi, et al. “Modification of conventional glass-ionomer cements with N-vinylpyrrolidone containing polyacids, nanohydroxy and fluorapatite to improve mechanical properties”. Dental Materials; Vol. 24, No. 10: pp. 1381-1390, 2008.

U. Lohbauer. “Dental Glass Ionomer cements as Permanent Filling Materials – Properties, Limitations Future Trends”. Materials; Vol. 3, No. 1: pp. 76-96, 2010.

R. Menezes-Silva, F.V. Pereira, M.H. Santos, et al. « Biocompatibility of New Dental Glass Ionomer Cement with Cellulose Microfibers and Cellulose Nanocrystals”. Brazilian Dental Journal; Vol. 28, No. 2: pp. 172-178, 2017.

D-A Kim, J-H Lee, S-K Jun, et al. “Sol–gel-derived bioactive glass nanoparticle-incorporated glass ionomer cement with or without chitosan for enhanced mechanical and biomineralization properties”. Dental Materials; Vol. 33: pp. 805-817, 2017.

L. Sun, Z. Yan, Y. Duan, et al. “Improvement of the mechanical, tribological and antibacterial properties of glass ionomer cements by fluorinated graphene”. Dental Materials; Vol. 34: pp. 115–127, 2018.

G. Allam, O. Abd El-Geleel. “Evaluating the Mechanical Properties, and Calcium and Fluoride Release of Glass-Ionomer Cement Modified with Chicken Eggshell Powder”. Dental Journal; 6(40): 1-8, 2018.

T. Kasuga, M. Yoshida, A.J. Ikushima, M. Tuchiya, H. Kusakari. “Stability of zirconia-toughened bioactive glass-ceramics—in vivo study using dogs”. Journal of Materials Science: Materials in Medicine; Vol. 4, No. 1: pp. 36–9, 1993.

D. DietschiD, M. Romelli, A. Goretti. “Adaptation of adhesive posts and cores to dentine after fatigue testing”. International Journal of Prosthodontics; Vol. 10, No. 6: pp. 498-507, 1997.

M.J. Heffernan, S.A. Aquilino, A.M. Diaz-Arnold, et al. “Relative translucency of six all-ceramic systems. Part I: core materials”. Journal of Prosthetic Dentistry; Vol. 88, No. 1: pp. 4–9, 2002.

A.A. Madfa, F.A. Al‑Sanabani, N.H. Al‑Qudami, et al. “Use of zirconia in dentistry: An overview”. Open Biomaterials Journal; Vol. 5: pp. 1‑9, 2014.

A. Zefia, H. Krishnan, M. Joy. “Biomimicry: “The Nature Inspired Way” in Restorative Dentistry”. International Journal of Science and Research; Vol. 9, No. 9: sr20924143812; 2020.

C. Piconi, G. Maccauro. “Zirconia as a ceramic biomaterial”. Biomaterials; Vol. 20, No. 1: pp. 1-25, 1999.

Y.W. Gu, A.U.J. Yap, P. Cheang, K.A. Khor. “Zirconia–glass ionomer cement––a potential substitute for Miracle Mix”. Scripta Materialia; Vol. 52: pp.113–116, 2005.

B. Woodfine, J. Clarke, R.W. Billington. “Glass ionomers and standards”. Journal of Dentistry; Vol. 34: pp. 614–622, 2006.

M.S. Zafar, F. Amin, M.A. Fareed, et al. “Biomimetic aspects of restorative dentistry biomaterials”. Biomimetics; Vol. 5, No. 3: 34, 2020.

A. Bhattacharya, S. Vaidya, A.K. Tomer, et al. “GIC at Its best – A review on ceramic reinforced GIC”. International Journal of Applied Dental Science; Vol. 3, No. 4: pp. 405-408, 2017.

W. Zollner., C. Rudel. In: Hunt P.C., editor. “Glass ionomers: the next generation”. Philadelphia International Symposium in Dentistry; pp. 57–60.1994.

N.M. Ayad, S.A. Elnogoly, O.M. Badie. “An in-vitro study of the physico-mechanical properties of a new aesthetic restorative versus dental amalgam”. Revista Clínica e Pesquisa Odontologica; Vol. 4, No. 3: pp. 137-144, 2008.

C.A.M. Volpato, L.Gd’A Garbelotto, M.C. Fredel , et al. “Application of zirconia in dentistry: Biological, mechanical and optical considerations”. In: Sikalidis, C., editors. Advances in ceramics - electric and magnetic ceramics, bioceramics, ceramics and environment. Rijeka: InTech: pp. 397-404, 2011.

F.O. Gomes, R.A. Pires, R.L. “Aluminium-free glass-ionomer bone cements with enhanced bioactivity and biodegradability”. Materials Science Engineering; Vol. 33: pp. 1361-1370, 2013.

M.U. Patel, S.K. Punia, S. Bhat, et al. “An in vitro evaluation of microleakage of posterior teeth restored with amalgam, composite and zirconomer ‑A stereomicroscopic study”. Journal of Clinical Diagnostic Research; Vol. 9: pp. ZC65‑7, 2015.

S. Saxena, S. Tiwari. “Energy dispersive X‑ray microanalysis, fluoride release, and antimicrobial properties of glass ionomer cements indicated for atraumatic restorative treatment”. Journal of International Society of Preventive and Community Dentistry; Vol. 6: pp. 366-72, 2016.

F.M. Melody, Y.A. U-Jin, T.W. Natalie, et al. « Effects of thermal fatigue on shear punch strength of tooth-coloured restoratives”. Journal of Conservative Dentistry; Vol. 19: pp. 338-42, 2016.

S. Kathal, D.P Bhayya, S. Gupta, et al. “Comparative Evaluation of Microleakage of Zirconomer, Amalgomer CR, and Conventional Glass Ionomer (Type II) as Restorative Cements in Primary Teeth: An in vitro Study”. International Journal of Oral Care Research; Vol. 5, No. 3: pp. 1-7, 2017.

H.P. Bhatia, S. Singh, S. Sood, et al. “Comparative Evaluation of Sorption, Solubility, and Compressive Strength of Three Different Glass Ionomer Cements in Artificial Saliva: An in vitro Study”. International Journal of Clinical Paediatric Dentistry; Vol. 10; No. 1: pp. 49-54, 2017.

S. Asafarlal. “Comparative Evaluation of Microleakage, Surface Roughness and Hardness of Three Glass Ionomer Cements – Zirconomer, Fujii IX Extra GC and Ketac Molar: An In Vitro Study”. Dentistry; Vol. 7, No. 5: pp. 1-5. 2017.

E. Ranadheer, U.D. Shah, K. Neelakantappa, S. Fernandes. “Comparative Analysis of Microleakage of Zirconia-infused Glass Ionomer Cement with Miracle Mix and Amalgam: An In Vitro Study”. Cureus; Vol. 10, No. 12: pp. 1-11. e3672, 2018.

A. Khera, BN. Vallal. “Comparative Evaluation of Flexural Strength of Composite Resin and Microhardness of Silver Amalgam and Composite Resin to Zirconomer”. International Journal of Clinical Dentistry; Vol. 12, No. 1: pp. 21-29. 2019.

Y.W. Gu, A.U. Yap, P. Cheang, et al.” Effects of incorporation of HA/ZrO(2) into glass ionomer cement (GIC)”. Biomaterials; Vol. 26: pp. 713–720, 2005.

Ch. Shetty, V. Sadananda, M.N. Hegde, et al. “Comparative Evaluation of Compressive Strength of Ketac Molar, Zirconomer, and Zirconomer Improved”. Scholars Journal of Dental Sciences; Vol. 4, No. 6: pp. 259–261, 2017.

F. Sharafeddin, S. Shoale, M. Kowkabi. “Effects of Different Percentages of Microhydroxyapatite on Microhardness of Resin-modified Glass-ionomer and Zirconomer”. Journal of Clinical Experimental Dentistry; Vol. 9, No. 6: e805-11, 2017.

N. Abdulsamee, A.H. Elkhadem. “Zirconomer and Zirconomer Improved (White Amalgams): Restorative Materials for the Future. Review”. EC Dental Science; Vol. 15, No. 4: pp. 134-150, 2017.

R. Albeshti, S. Shahid. “Evaluation of Microleakage in Zirconomer®: A Zirconia Reinforced Glass Ionomer Cement”. Acta stomatologica Croatia; Vol. 52, No. 2: pp. 97-104, 2018.

R. Gupta, M. Srivastava, U. Masih. “Nano-hydroxyapatite (Nano-HAp) reinforced glass ionomer cement: an alternative restorative material”. International Journal of Advanced Research; Vol. 6, No. 6: pp. 616-620, 2018.

A. Hopewell-SmithA. “Concerning human cementum”. Journal of Dental Research; Vol. 2, No. 1: pp. 59-76, 1920.

R.R. Woehrle. “Cementum regeneration in replanted teeth with different pulp treatment”. Journal of Dental Research; Vol. 55, No. 2: pp. 235-238, 1976.

R. Hołubowicz, A. Porębska, M. Poznar, et al. “Biomineralization — precision of shape, structure and properties controlled by proteins”. Postępy Biochemii; Vol. 61, No. 4: pp. 364-380, 2015.

M. Pandya, T.G.H. Diekwisch. “Enamel biomimetics—fiction or future of dentistry”. International Journal of Oral Science; Vol. 11; No. 8: pp.1-9, 2019.

A. Upadhyah, S. Pillai, P. Khayambashi, et al. « Biomimetic apsects of oral and dentofacial regeneration. Biomimetics (Baasel); Vol. 5, No. 4: pp. 1-45, 2020.

W. Hoffmann-Axthelm. “History of Dentistry”. Quintessence Publishing Co., Inc., 1981.

A. DevigusA.” Editorial: Dentistry inspired by nature”. International Journal of Aesthetic Dentistry; Vol. 12, No. 2: p.133, 2017.

A.S. Perera, M-O Coppens. “Re-designing materials for biomedical applications: from biomimicry to nature-inspired chemical engineering”. Philosophical Transactions of the Royal Society A; Vol. 377: pp. 1-21, 2018.

F.M. Abed, S. B. Kotha, H. alShukari, et al. “Effect of different concentration of silver nanoparticles on the quality of the chemical bond of glass ionomer cement dentine in primary teeth”. Frontiers Bioengineering and Biomechanics; Vol. 10; pp. 19, 2022.

Y.S. Hasani, M. Paryab, A. Saffarpour, M.J. Kharazifard, M. Shahrabi. “The Effect of Disinfection with Chlorhexidine on the Shear Bond Strength of Equia Resin-Modified Glass Ionomer Cement to Dentin in Permanent Teeth after Two Thermocycling Protocols”. Journal of Dentistry (Shiraz); Vol. 18, No 4: pp. 265–271, 2017.

P. Borompiyasawat, B. Putraphan, S. Luangworakhun, et al. “Chlorhexidine gluconate enhance the remineralization effect of high viscosity glass ionomer cement on dentine carious lesions in vitro”. BMC Oral health; Vol. 22: pp. 1-11, 2022.

E. Meral, N.M. Baseren. „Shear bond strength and microleakage of novel glass-ionomer cements: An In vitro Study”. Niger Journal of Clinical Practice; Vol. 22: pp. 566-72, 2019.

A. Leeuwenhoek. “Microscopical observations concerning blood, milk, bone, the brain, spittle, and cuticula, etc.”. Philosophical Transactions; Vol. 9: pp. 121–128, 1674.

O.D. Klein, O. Duverger, W. Shaw, et al. “Meeting report: a hard look at the state of enamel research. International Journal of Oral Science; Vol. 9: e3, 2017.

W. Habraken, P. Habibovic, M. Epple, et al. « Calcium phosphates in biomedical applications: materials for the future?”. Materials Today; Vol. 19: pp. 69–87, 2016.

I.C. Shaffer, Y. Nakano, A. Pham. “Effect of early life adversity on tooth enamel formation: Frontiers Dental Medicine; Vol. 3; 894753: pp. 1-9, 2022.

J.D. McGuire, M.P. Walker, V. Dusevich, et al. “Enamel organic matrix: potential structural role in enamel and relationship to residual basement membrane constituents at the dentin enamel junction”. Connective Tissue Research; Vol. 55, No. 01: pp.33–37, 2014.

J. Yan, H. Yang, T. Luo, et al. “Application of amorphous calcium phosphate agents in the prevention and treatment of enamel demineralization”. Frontiers in Bioengineering and Biotechnology; vol. 10: pp. 1-110, 2022.

G. de With, H.J.A. van Dijk, N. Hattu, et al. “Preparation, microstructure and mechanical properties of dense polycrystalline hydroxyapatite”. Journal of Materials Science.; Vol. 16: pp. 592-1598, 1981.

A.M. King’Ori. “A review of the uses of poultry eggshell and shell membrane”. International Journal of Poultry Science; Vol. 10: pp. 908–912, 2011.

A.G. Atiyah, N.H. aL-Falahi, F.K. Farhan. “Synthesis and structure of eggshell hydroxyapatite bone implant”. Journal of Veterinary Research; Vol. 22, No. 6: pp. 486-491, 2018.

M. Sivakumar, T.S. Sampath, K.L. Kumart. „Development of hydroxyapatite derived from Indian coral”. Biomaterials; Vol. 17: pp. 1709-1714, 1996.

C.Y. Ooi, M. Hamdi, S. Ramesh. “Properties of hydroxyapatite produced by annealing of bovine bone”. Ceramics International; Vol. 33: pp. 1171–1177, 2007.

G. Allam, O.A. el-Geleel. “Evaluating the Mechanical Properties, and Calcium and Fluoride Release of Glass-Ionomer Cement Modified with Chicken Eggshell Powder”. Dental Journal; Vol. 6, No. 40: pp. 1-8, 2018,

S. Zwenger, Ch. Basu. “Plant terpenoids: applications and future potentials”. Biotechnology and Molecular Biology Reviews; Vol. 3, No. 1: pp. 01-07. 2008.

P.P.A. Mazza, F. Martini, B. Sala, et al. “A new Palaeolithic discovery: Tar-hafted stone tools in a European mid-Pleistocene bone-bearing bed”. Journal of Archaeological Sciences; Vol. 33: pp. 1310-1318, 2006.

W. Thompson d’Arcy.” Aristoteles. Historia animalium”. Transactions. Oxford University Press, Oxford. 1910.

P. van der Feen. „Byssus“. Basteria; Vol. 13: pp. 66–71. 1949.

J.H. Waite. “Adhesion in byssally attached bivalves”. Biological Reviews; Vol. 58: pp. 209–231, 1983.

J.H. Waite.” Nature’s underwater adhesive specialist”. International Journal of Adhesion and Adhesives; Vol. 7: pp. 9–14. 1987.

J.H. Waite. “The phylogeny and chemical diversity of Quinone-tanned glues and varnishes”. Comparative Biochemistry and Physiology; Vol. 77B: pp. 19–29, 1990.

H. Zhao, J.H. Waite. “Linking adhesive and structural proteins in the attachment plaque of Mytilus californianus”. Journal of Biological Chemistry; Vol. 281: pp. 26150–26158, 2006.

C.H. Brown. “Some structural proteins of Mytilus edulis”. Microscopy Science; Vol. 93: pp. 487–502, 1952.

W. Wei., Y. Tan., N.R.M. Rodriguez, et al. “A mussel-derived one component adhesive coacervate”. Acta Biomaterialia, Vol. 10, pp. 1663–70, 2014.

G.P. Maier, M.V. Rapp, J.H. Waite, et al. « Adaptive synergy between catechol and lysine promotes wet adhesion by surface salt displacement”. Science; Vol. 349, No. 6248: pp. 628–632, 2014.

B.J. Endrizzi, R. Stewart. “Glueomics: an expression survey of the adhesive gland of the sandcastle worm”. Journal of Adhesives; Vol. 85: pp. 546–59, 2009.

K. Autumn, M. Sitti, Y.A. Liang, et al. “Evidence for van der Waals adhesion in gecko setae”. Proceedings of the National Academy of Science; Vol. 99, No. 19: pp. 12 252–12 256, 2002.

D.M. Slater, M.J. Vogel, A.M. Macner, et al. “Beetle-inspired adhesion by capillary-bridge arrays: pull-off detachment”. Journal of Adhesion Science Technology; Vol. 8: pp. 1-17, 2012

T. Kleinteich, S.N. Gorb. „Tongue adhesion in the horned frog Ceratophrys sp”. Science Report; Vol. 4: pp. 1-8, 2014.

Downloads

Published

2022-11-29

Issue

Section

Review Article

How to Cite

[1]
T. "Tomi" Kupka, “Nature-inspired Material – A Step Ahead in Dental Materials”, Int. Ann. Sci., vol. 12, no. 1, pp. 31–46, Nov. 2022.