An Insight into the Solar Dynamo Theory

Authors

  • Babu Ram Tiwari Chinese Academy of Sciences, Beijing
  • Mukul Kumar National Space Science Centre, Chinese Academy of Sciences, Beijing

DOI:

https://doi.org/10.21467/ias.3.1.27-36

Abstract

The Sun manifests its magnetic field in form of the solar activities, being observed on the surface of the Sun. The dynamo action is responsible for the evolution of the magnetic field in the Sun. The present article aims to present an overview of the studies have been carried on the theory and modelling of the solar dynamo. The article describes the alpha-omega dynamo model. Generally, the dynamo model involves the cyclic conversion between the poloidal field and the toroidal field. In case of alpha-omega dynamo model, the strong differential rotation generates a toroidal field near the base of the convection zone. On the other hand, the turbulent helicity leads to the generation of the poloidal field near the surface. The turbulent diffusion and the meridional circulation are considered as the two important flux transport agents in this model. The article briefly describes the theory of solar dynamo and mean field dynamo model.

Keywords:

Solar Dynamo, Mean Field Dynamo Theory, Magnetohydrodynamics, Alpha-Omega Dynamo Model

Downloads

Download data is not yet available.

References

J. Larmor, “How could a rotating body such as the Sun become a magnet?”, Reports of the British Association, v. 87, p. 159-160, 1919.

R.H. Cranmer, M. Dikpati, A. Brandenburg, “The global solar dynamo”, Space Science Review, 210, 367 – 395, 2017.

A. Herzenberg, “Geomagnetic Dynamos”, Philosophical Transactions of the Royal Society of London A”, 250, 543-583, 1958.

G. O. Roberts, “Spatially periodic dynamos”, Philosophical Transactions of the Royal Society of London A”, 266, 535-558, 1970.

E.N. Parker, “Hydromagnetic Dynamo Models”, The Astrophysical Journal, 122, 293, 1955.

M. Steenbeck, F. Krause, K. -H. Radler, “A calculation of the mean electromotive force in an electrically conducting fluid in turbulent motion under the influence of Coriolis forces”, Zeitschrift Naturforschung Teil A, v. 21, p. 369-376,1966.

H.W. Babcock, “The topology of the Sun's magnetic field and the 22-year cycle”, The Astrophysical Journal, 133, 572, 1961.

R.B. Leighton, 1964, “Transport of magnetic fields on the Sun”, The Astrophysical Journal, 140, 1547, 1964.

R.B. Leighton, 1969, “A magneto-kinematic model of the solar cycle”, The Astrophysical Journal, 156, 1969.

M. Stix, “Comments on the solar dynamo”, Astron. Astrophys, 37, 121 – 133, 1974.

A. Courvoisier, “Dynamo Action and the Generation of Large-scale Magnetic Fields in Astrophysics”, Thesis (Mathematics, PhD) University of Leeds, Leeds, 2006.

S. M. Tobias, “The solar dynamo”, Philosophical Transactions of Royal Society of London A, v. 360, p. 2741-2756, 2002.

A. Brandenburg, K. Subramanian, “Astrophysical magnetic fields and nonlinear dynamo theory” Physics Reports, v. 417, 1-209, 2005.

Agris Gailitis, Olgerts Lielausis, Sergej Dement’ev, Ernest Platacis, Arnis Cifersons, Gunter Gerbeth, Thoman Gundrum, Frank Stefani, Michael Christen, Heiko Hanel, and Gotthard Will, Physical Review Letters, v. 84, p. 4365, 2000.

H. Alfven, “Remarks on the rotation of a magnetized sphere with application to the solar rotation”, Ark.f.Mat.Astr.o.Fysik, 29B, No.2. 1942.

A. R. Choudhuri, “The physics of fluids and plasmas: An Introduction for Astrophysicists”, Cambridge University Press, 1998.

M. Ossendrijver, “The solar dynamo”, The Astronomy and Astrophysics Review, v. 11, p. 287- 367, 2003.

T. G. Cowling, “The magnetic field of sunspots”, MNRAS, v. 94, p. 34-48, 1933.

M. Nunez, “The decay of axisymmetric magnetic fields: A review of cowling’s theorem” SIAM REVIEW, v. 38, n.4, p. 553- 564, 1996.

J. A. Bittencourt, “Fundamentals of Plasma Physics”, [S.I]: Springer-Verlag, 2004.

W.M. Elsasser, “Induction effects in terrestrial magnetism part I. theory”, Physical Review, v. 69, p.106-116, 1946.

M. R. E. Proctor, “An extension of the toroidal theorem”, Geophysical and Astrophysical Fluid Dynamics, v. 98, p. 235-240, 2004.

S. K. Solanki, B. Inhester, M. Schussler, “The solar magnetic fields”, Reports on Progress In Physics, v. 69, p. 563-668, 2006.

E. N. Parker, “The generation of magnetic fields in astrophysical bodies i. The dynamo equations” Astrophysical Journal, v.162, p. 665- 673, 1970.

A. S. Monin, A. M. Yaglom, “Statistical Fluid Mechanics”, vol. 1, MIT Press, Cambridge, 1973, ISBN:0-486-45891-1 (pbk)

F. Krause, K. H. Radler, “Mean-Field Magnetohydrodynamics and Dynamo Theory”, Pergamon Press, Elsevier, 1980.

C. A. Jones, J. M. Thompson, S. M.Tobias, “The Solar Dynamo”, Space Science Review, v.152, p. 591-616, 2010.

H. K. Moffatt, “Magnetic field generation in electrically conducting fluids”, Cambridge University Press 1978.

Gorinsky, B., et al. "Evidence for the bilobal nature of diferric rabbit plasma transferrin." Nature 281.5727 (1979): 157-158.

Krause, F., and K. H. Rädler. "Mean-field electrodynamics and dynamo theory." Akademie, Berlin, Germany (1980).

Pipin, V.V. “Advances in Mean-Field Dynamo Theories” Solar and Astrophysical Dynamos and Magnetic Activity, Proceedings IAU Symposium No. 294, 2013

P. H. Roberts, “Fundamentals of dynamo theory: in Lectures on Solar and Planetary Dynamos”, Cambridge University Press,1-58,1994, ISBN: 9780521461429

S. I. Vainshtein, F. Cattaneo, “Nonlinear restrictions on dynamo action” Astrophysical Journal, v. 393, p. 165, 1992.

N.O. Weiss, “Lectures on Solar and Planetary Dynamos”, Cambridge University Press, 59, 1994.

T. G. Cowling, “The present status of dynamo theory”, Annual review of astronomy and astrophysics, v. 19, p. 115-135, 1981.

E. N. Parker, “Cosmical Magnetic Fields: Their origin and their activity”, Oxford University Press, 858, 1979.

M. Stix, “The Sun: An Introduction”, Springer-Verlag, Berlin, 1989.

P. Charbonneau, “Dynamo Models of the Solar Cycle”, Living Review in Solar Physics, 7, 3, 2010.

Downloads

Published

2017-12-30

Issue

Section

Short Review

How to Cite

[1]
B. R. Tiwari and M. Kumar, “An Insight into the Solar Dynamo Theory”, Int. Ann. Sci., vol. 3, no. 1, pp. 27–36, Dec. 2017.