Combining Ability and Heterosis in Diallel Analysis of Maize (Zea mays L.) Lines

Authors

  • Francis Chukwuma Onejeme Department of Crop Science and Horticulture, Nnamdi Azikiwe University
  • Emmanuel Ogbonna Okporie Department of Crop Production and Landscape Management, Ebonyi State University
  • Chinedu Emmanuel Eze Department of Agronomy, Michael Okpara University of Agriculture

DOI:

https://doi.org/10.21467/ias.9.1.188-200

Abstract

A sound breeding program for maize improvement is very important to meet the demands of the growing population. Therefore, combining ability and heterosis were studied in a 4 x 4 full diallel cross in maize for growth attributes, yield and its contributing traits. Randomized Complete Block Design (RCBD) with four replicates was used to study the general combining ability of parents, specific combining ability of F1s (including reciprocals) and heterosis of the F1s over commercial check variety on selected agronomic characters. Genotype was highly significant for all the traits studied. The combining abilities (GCA and SCA) and reciprocal mean squares were highly significant for most studied characters. The ratio of GCA/SCA was not less than unity for studied traits excepted for days to anthesis and ear height. The results indicated that the additive genetic effects were more important and played major role in studied traits. Thus, results revealed GCA effects for the parental lines (PL). Where ‘PL2’ was excellent combiner for number of tassels and cob circumference and ‘PL3’ was good combiner for days to silking and grain yield (t.h-1). While ‘PL4’ for short height. Majority of the F1s from the GCA effects showed high SCA effects. This F1 (PL2 x PL3) performed best amongst. However, several reciprocals were not desirable. Heterosis estimation was carried out using a commercial check, Oba super II. When commercial check was used, the percent heterosis especially on grain yield varied from -8.89 to 22.62%. Among the twelve F1s, nine of the crosses exhibited significant positive heterosis for grain yield (t.h-1). Those F1s that showed significant positive and/or negative desirable traits for SCA effects and significant positive heterosis could be used for varietal development in maize breeding. And conservation of those parents that exhibited high GCA effects be considered as well.

Keywords:

Maize, general combining ability, specific combining ability, reciprocal effects, heterosis

Downloads

Download data is not yet available.

References

S. K. Assem, “Maize, Tropical (Zea mays L.),” Methods Mol. Biol., vol. 1223, pp. 119-134, 2015. DOI: 10.1007/978-1-4939-1695-5-9.

A. A. Abdulrahaman and O. M. Kolawole, “Traditional preparations and uses of maize in Nigeria,” Ethnobotanical Leaflets, vol. 10, pp. 219-227, August 2006.

S. Dutt, “A handbook of Agriculture,” ABD Publishers, India, pp. 116-118, January 2005. ISBN-10: 978-8189011543.

A. E. Sharief, S. E. El-Kalla, H. E. Gado and H. A. E. Abo-Yousef, “Heterosis in yellow maize,” Aust. J. Crop Sci., vol. 3, no. 3, pp. 146-154, May 2009. ISSN: 1835-2707.

B. Griffing, “Concept of general and specific combining ability in relation to diallel crossing systems,” Aust. J. Biol. Sci., vol. 9, no. 4, pp. 463-493, June 1956.

C. O. Gardner and S. A. Eberhart, “Analysis and interpretation of the variety cross diallel and related populations,” Biometrics, vol. 22, no. 3, pp. 439-452, September 1966.

T. Shimelis, Z. Habtamu and A. Demissew, “Combining ability of highland adapted maize (Zea mays L.) inbred lines for grain yield and yield related traits under optimum and low nitrogen conditions,” African J. Plant Sci., vol. 13, no. 5, pp. 125-137, May 2019. https://doi.org/10.5897/AJPS2019.1765.

A. Menkir, A. Melake-Berhan, C. The, I. Ngelbrecht and A. Adepoju, “Grouping of tropical mid-altitude maize inbred lines on the basis of yield data and molecular markers,” Theor. Applied Genetics, vol. 108, no. 8, pp. 1582-1590, May 2004. DOI: 10.1007/s00122-004-1585-0.

M. D. Melani and M. D. Carena, “Alternative maize heterotic pattern for the Northern corn-belt,” Crop Sci., vol. 45, no. 6, pp. 2186-2194, November 2005. https://doi.org/10.2135/cropsci2004.0289.

C. Barata and M. J. Carena, “Classification of North Dakota maize inbred lines into heterotic groups based on molecular and testcross data,” Euphytica, vol. 151, pp. 339-349, August 2006.

B. A. Rojas and G. F. Sprague, “A comparison of variance components in com yield trials: III. General and specific combining ability and their interaction with locations and years,” Agron. J., vol. 44, pp. 462-462, September 1952.

D. Charlesworth and J. H. Willis, “The genetics of inbreeding depression,” Nature Reviews Genetics, vol. 10, no. 11, pp. 783-796, November 2009.

A. F. Troyer, “Adaptedness and heterosis in corn and mule hybrids,” Crop Sci., vol. 46, no. 2, pp. 528-543, March 2006. https://doi.org/10.2135/cropsci2005.0065.

C. G. Hopkins, “Inbreeding of corn and methods of prevention,” Journal of Heredity, vol. os-1, no. 2, pp. 147-150, January 1905. https://doi.org/10.1093/jhered/os-1.2.147.

G. H. Shull, “The composition of a field of maize,” Journal of Heredity, vol. os-4, no. 1, pp. 296-301, January 1908. https://doi.org/10.1093/jhered/os-4.1.296.

G. H. Shull, “A pure-line method in corn breeding,” Journal of Heredity, vol. os-5, no. 1, pp. 51-58, January 1909. https://doi.org/10.1093/jhered/os-5.1.51.

M. Frisch, A. Thiemann, J. Fu, T. A. Schrag, S. Scholten and A. E. Melchinger, “Transcriptome-based distance measures for grouping of germplasm and prediction of hybrid performance in maize,” Theor. Applied Genetics, vol. 120, no. 2, pp. 441-450, November 2010. https://doi.org/10.1007/s00122-009-1204-1.

C. Riedelsheimer, A. Czedik-Eysenberg, C. Grieder, J. Lisec, F. Technow and R. Sulpice et al., “Genomic and metabolic prediction of complex heterotic traits in hybrid maize,” Nat. Genetics, vol. 44, no. 2, pp. 217-220, January 2012. https://doi.org/10.1038/ng.1033

M. Groszmann, I. K. Greaves, Z. I. Albertyn, G. N. Scofield, W. J. Peacock and E. S. Dennis, “Changes in 24-nt siRNA levels in Arabidopsis hybrids suggest an epigenetic contribution to hybrid vigor,” Proc. Natl. Acad. Sci. USA, vol. 108, no. 6, pp. 2617-2622, February 2011. https://doi.org/10.1073/pnas.1019217108.

L. Zhang, Y. Peng, X. Wei, X. Y. Dia, D. Yuan and Y. Lu et al., “Small RNAs as important regulators for the hybrid vigour of super-hybrid rice,” J. Exp. Bot., vol. 65, no, 20, pp. 5989-6002, November 2014. https://doi.org/10.1093/jxb/eru337.

E. L. F. de Abreu, M. Westhues, A. cuadros-Inostroza, L. Wilmitzer, A. E. Melchinger and Z. Nikoloski, “Metabolic robustness in young roots underpins a predictive model of maize hybrid performance in the field,” Plant J., vol. 90, pp. 319-329, January 2017. https://doi.org/10.1111/tpi.13495

D. Dahal, B. P. Mooney and K. J. Newton, “Specific changes in total and mitochondrial proteomes are associated with higher levels of heterosis in maize hybrids.” Plant J. vol. 72, no. 1, pp. 70-83, May 2012. https://doi.org/10.1111/j.1365-313x2012.05056.x

P. S. Schnable and N. M. Springer, “Progress toward understanding heterosis in crop plants,” Annual Review of Plant Biology, vol. 64, no. 1, pp. 71-88, April 2013. https://doi.org/10.1146/annurev-arplant-042110-103827

S. Kaeppler, “Heterosis: Many genes, many mechanisms – End the search for an undiscovered unifying theory,” ISRN Botany, vol. 2012, pp. 1-12, October 2012. https://doi.org/10.5402/2012/682824.

S. A. Flint-Garcia, E. S. Buckler, P. Tiffin, E. Ersoz and N. M. Springer, “Heterosis is prevalent for multiple traits in diverse maize germplasm,” PLoS One, vol. 4, no. 10, pp. 7433, October 2009. https://doi.org/10.1371/journal.pone.0007433

M. Groszmann, R. Gonzalez-Bayon, R. L. Lyons, I. K. Greaves, K. Kazan and W. J. Peacock et al., “Hormone-regulated defense and stress response networks contribute to heterosis in Arabidopsis F1 hybrids.” Proc. Natl. Acad. Sci. USA, vol. 112, no. 46, pp. 6397-6406, November 2015. https://doi.org/10.1073/pnas.1519926112.

M. Miller, Q. Song, X. Shi, T. E. Juenger and Z. J. Chen, “Natural variation in timing of stress-responsive gene expression predicts heterosis in intraspecific hybrids of Arabidopsis,” Natural Commun., vol. 6, pp. 7453, July 2015. https://doi.org/10.1038/ncomms8453. PMID: 26154604.

F. Kutka, “Open-pollinated vs. hybrid maize cultivars,” Sustainability, vol. 3, pp. 1531-1554, September 2011. DOI: 10.3390/su3091531. ISSN 2071-1050.

U. Krieger, Z. B. Lippman and D. Zamir, “The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato,” Nat. Genetics, vol. 42, pp. 459-463, March 2010. https://doi.org/10.1038/ng.550. ISSN: 1546-1718.

A. Girke, A. Schierholt and H. C. Becker, “Extending the rapeseed gene pool with resynthesized Brassica napus II: Heterosis,” Theor. Appl. Genetics, vol. 124, no. 6, pp. 1017-1026, April 2012. https://doi.org/10.1007/s00122-011-1765-7. PMID: 22159759.

G. J. Seiler, L. L. L. Qi and L. F. Marek, “Utilization of sunflower crop wild relatives for cultivated sunflower improvement,” Crop Sci., vol. 57, no. 3, pp. 1083-1101, June 2017. https://doi.org/10.2135/cropsci2016.10.0856.

D. Li, Z. Huang, S. Song, Y. Xin, D. Mao, Q. Lv, M. Zhou, D. Tian, M. Tang, Q. Wu, X. Liu, T. Chen, X. Song, X. Fu, B. Zhao, C. Liang, A. Li, G. Liu, S. Li, S. Hu, X. Cao, J. Yu, L. Yuan, C. Chen and L. Zhu, “Integrated analysis of phenome, genome, and transcriptome of hybrid rice uncovered multiple heterosis-related loci for yield increase,” Proc. Natl. Acad. Sci. USA, vol. 113, no. 41, pp. 6026-6035, September 2016. https://doi.org/10.1073/pnas.1610115113

J. Tang, J. Yan, X. Ma, W. Teng, W. Wu, J. Dai, B. S. Dhillon, A. E. Melchinger and J. Li, “Dissection of the genetic basis of heterosis in an elite maize hybrid by QTL mapping in an immortalized F2 population,” Theor. Appl. Genetics, vol. 120, no. 2, pp. 333-340, January 2010. https://doi.org/10.1007/s00122-009-1213-0. PMID: 19936698.

T. Guo, N. Yang, H. Tong, Q. Pan, X. Yang, J. Tang, J. Wang, J. Li and J. Yan, “Genetic basis of grain yield heterosis in an “immortalized F2” maize population,” Theor. Appl. Genetics, vol. 127, no. 10, pp. 2149-2158, October 2014b. https://doi.org/10.1007/s00122-014-2368-x. PMID: 25104328.

G. M. He, A. A. Elling and X. W. Deng, “The epigenome and plant development,” Annnu Rev. Plant Biol., vol. 62, pp. 411-435, March 2011. https://doi.org/10.1146/annurev-arplant-042110-103806.

M. Groszmann, I. K. Greaves, R. Fujimoto, W. J. Peacock and E. S. Dennis, “The role of epigenetics in hybrid vigour,” Trends Genetics, vol. 29, no. 12, pp. 684-690, December 2013. https://doi.org/10.1016/j.tig.2013.07.004. PMID: 23953922.

I. K. Greaves, R. Gonzalez-Bayon, L. Wang, A. Y. Zhu, P. C. Liu, M. Groszmann, W. J. Peacock and E. S. Dennis, “Epigenetic changes in hybrids,” Plant Physiol., vol. 168, no. 4, pp. 1197-1205, August 2015. https://doi.org/10.1104/pp.15.00231. PMID: 26002907.

FAOSTAT, “Statistical databases and data sets of the Food and Agriculture Organization of the United Nations,” Rome, September 2010.

M. R. Rosegrant, C. Ringler, T. B. Sulser, Palazzo et al. and M. Ewing, “Agriculture and food security under global change: Prospects for 2025/2050,” International Food Policy Research Institute, October 2009.

S. K. Vasal, “Hybrid maize technology: Challenges and expanding possibilities for research in the next century, In: S. K. Vasal, C. F. Gonzalez and F. Xingming (ed), Proc. 7th Asian Reg. Maize Workshop, Los Banos, Philippines,” pp. 58-62, February 1998.

L. C. Mba and R. N. C. Anyadike, “Effect of soil characteristics on plant growth and productivity in Nsukka agro-ecological zone of Nigeria,” International Journal of Research in Arts and Social Sciences, vol. 5, pp. 274-285, 2013. Corpus ID-132824339 ISSN-2141-8349.

W. Ubi, G. M. Ubi, M. W. Ubi, T. Okweche and P. W. Ojei, “Optimizing NPK fertilizer and plant spacing in maximizing yield and yield attributes of maize (Zea mays) in southern Nigeria,” Direct Res. J. Agric. Food Sci., vol. 4, no. 8, pp. 208-213, August 2016. ISSN 2354-4147.

GenStat. GenStat 4th Edition, “VSN International bioscience software and consultancy,” Hemel Hempstead, HP2 4TP UK, 4th Edition, February, 2012. http://www.vsni.co.uk/about-vsni/press-and-media/genstat.

R. K. Singh and P. K. Singh, “A manual on genetics and plant breeding. Experimental techniques,” Kalyani Publs. Ludiana, New Delhi, pp. 99-107, 1994. OCLC Number-726816058.

J. R. Landon, “Booker tropical soil manual: A handbook for soil survey and agricultural land evaluation in the tropics and subtropics,” John Wiley and sons Inc., New York, pp. 74, 1991. ISBN 13: 978-0-582-00557-0.

FAO, “From work of land evaluation,” FAO Bulletin 32, FAO UNESCO, Rome, 1976. ISBN 92-5-100111-1.

O. Unamba, “The potassium status of the sand soils of Northern Imo State, Nigeria,” J. Soil Sci., vol. 139, no. 5, pp. 437-445, May 1985.

M. Elmyhun, C. Liyew, A. Shita and M. Andualem, “Combining ability performance and heterotic grouping of maize (Zea mays L.) inbred lines in testcross formation in Western Amhara, North West Ethiopia,” Cogent Food and Agriculture, vol. 6, pp. 1727625, January 2020. https://doi.org/10.1080/23311932.2020.1727625.

M. Amiruzzaman, M. A. Islam, L. Hasan, M. Kadir and M. M. Rohman, “Heterosis and combining ability in a diallel among elite inbred lines of maize (Zea mays L.),” Emir J. Food Agric., vol. 25, no. 2, pp. 132-137, November 2013. DOI: 10.9755/ejfa.v25i2.6084.

J. Derera, B. Tongoona, S. Vivek and M. D. Laing, “Gene action controlling grain yield and secondary traits in southern African maize hybrids under drought and non-drought environments,” Euphytica, vol. 162, pp. 411-422, August 2008. https://doi.org/10.1007/s10681-007-9582-4.

S. K. Vasal, G. Srinivasan, S. Pandey, F. C. Gonzalez, J. Crossa and D. L. Beek, “Heterosis and combining ability of CIMMYT’s quality protein maize germplasm: I. Lowland Tropical,” Subtropical. Crop Sci., vol. 33, no. 1, pp. 51-57, January 1993. https://doi.org/10.2135/cropsci1993.0011183X003300010006x.

Q. I. M. Mohammad, Md. G. Rasul, A. K. M. Aminul Islam, M. A. Khaleque Mian, Nasrin Akter Ivy and J. U. Ahmed, “Combining ability and heterosis in Maize (Zea mays L.),” American Journal of BioScience, vol. 4, no. 6, pp. 84-90, November 2016. DOI: 10.11648/j.ajbio.20160406.12.

S. P. Singh and H. N. Singh, “Genetic divergence in Okra (Abelmoschus esculentus L. Moerch),” Indian J. Hort., vol. 36, no. 2, pp. 166-170, 1979. ISSN: 0974-0112.

G. Singh, M. Singh and K. R. Dhiman, “Genetic analysis of maize (Zea mays L.) in Sikkim,” Indian J. Agri. Sci., vol. 65, no. 4, pp. 293-294, April 1995.

S. Ahmed, S. Begum, M. A. Islam, M. Ratna and M. R. Karim, “Combining ability estimates in maize (Zea mays L.) through line x tester analysis,” Bangladesh J. Agril. Res., vol. 42, no. 3, pp. 425-436, September 2017. ISSN: 2408-8293.

X. M. Fan, J. Tan, J. Yang and H. M. Chen, “Combining ability and heterotic grouping of ten temperate, tropical and subtropical quality protein maize,” Maydica (Italy), vol. 49, no. 4, pp: 267-272, January 2004. ISSN: 0025-6153.

K. R. Gowda, U. Kage, H. C. Lohithaswa, B. G. Shekara and D. Shobha, “Combining ability studies in maize (Zea mays L.),” Molecular Plant Breeding, vol. 4, no. 14, pp. 116-127, May 2013. DOI: 10.5376/mpb.2013.04.0014.

D. W. Gissa, H. Zelleke, M. T. Labuschagne, T. Hussien and H. Singh, “Heterosis and combining ability for grain yield and its components in selected maize inbred lines,” South African Journal of Plant and Soil, vol. 24, no. 3, pp. 133-137, May 2007. https://doi.org/10.1080/02571862.2007.10634795.

M. A. Abdel-Moneam, A. N. Attia, M. I. El-Emery and E. A. Fayed, “Combining ability and heterosis for some agronomic traits in crosses of maize (Zea mays L.),” Pak. J. Biol. Sci., vol. 12, no. 5, pp. 433-438, March 2009. DOI: 10.3923/pjbs.2009.433.438.

L. M. Moterle, A. L. Braccini, C. A. Scapim, R. J. B. Pinto, L. S. A. Goncalves, A. T. do Amaral Junior and T. R. C. Silva, “Combining ability of tropical maize lines for seed quality and agronomic traits,” Genetics and Molecular Research, Ribeirão Preto. Vol. 10, no. 3, pp. 2268-2278, September 2011. DOI: 10.4238/vol10-3gmr1129.

P. D. S. Cabral, A. T. do Amaral Junior, H. D. Vieira, J. S. Santos, I. L. J. Freitas and M. G. Pereira, “Genetic effects on seed quality in diallel crosses of popcorn,” Ciênc. Agrotec. Lavras, vol. 37, no. 6, pp. 502-511, November 2013. https://doi.org/10.1590/S1413-70542013000600003.

S. M. Uddin, F. Khatun, S. Ahmed, M. R. Ali and S. A. Begum, “Heterosis and combining ability in field corn (Zea mays L),” Bangladesh J. Bot., vol. 35, no. 2, pp. 109-116, December 2006.

S. M. Uddin, M. M. Amiruzzaman, S. A. Begum, M. A. Hakim and M. R. Ali, “Combining ability heterosis in maize (Zea mays L),” Bangladesh J. Genet Pl. Breed., vol. 21, no. 1, pp. 21-28, June 2008. https://doi.org/10.3329/bjpbg.v21i1.17045.

I. A. Atif, A. A. Awadalla, M. K. Mutasim, E. I. Atif and M. O. Abdellatif, “Combining ability and heterosis for yield and yield components in maize (Zea mays L.),” Australian Journal of Basic and Applied Sciences, vol. 6, no. 10, pp. 36-41, October 2012.

Downloads

Published

2020-07-07

Issue

Section

Research Article

How to Cite

[1]
F. C. Onejeme, E. O. Okporie, and C. E. Eze, “Combining Ability and Heterosis in Diallel Analysis of Maize (Zea mays L.) Lines”, Int. Ann. Sci., vol. 9, no. 1, pp. 188–200, Jul. 2020.