Conformable Derivatives in Laplace Equation and Fractional Fourier Series Solution

Authors

  • Ronak Pashaei Islamic Azad University, Central Tehran Branch, Tehran
  • Mohammad Sadegh Asgari Islamic Azad University, Central Tehran Branch, Tehran
  • Amir Pishkoo Physics and Accelerators Research School, Nuclear Science and Technology Research Institute, Tehran

DOI:

https://doi.org/10.21467/ias.9.1.1-7

Abstract

In this paper the solution of conformable Laplace equation, \frac{\partial^{\alpha}u(x,y)}{\partial x^{\alpha}}+ \frac{\partial^{\alpha}u(x,y)}{\partial y^{\alpha}}=0, where 1 < α ≤ 2 has been deduced by using fractional fourier series and separation of variables method. For special cases α =2 (Laplace's equation), α=1.9, and α=1.8 conformable fractional fourier coefficients have been calculated. To calculate coefficients, integrals are of type "conformable fractional integral".

Keywords:

Fractional fourier series, Conformable fractional derivative, Fractional Laplace's equation

Downloads

Download data is not yet available.

References

<ol>
<li class="show">Khalil, M. Al Horani, A. Yousef, M. Sababheh, \A new definition of fractional derivative", Journal of Computational and Applied Mathematics, Vol. 264, pp. 65-70, 2014. <a href="https://doi.org/10.1016/j.cam.2014.01.002">View</a></li>
<li class="show">Khalil, I. Abu Hammad, \Fractional fourier series with applications", American Journal of Computational and Applied Mathematics, Vol. 4, Issue 6, pp. 187-191, 2014.&nbsp;<a href="http://article.sapub.org/10.5923.j.ajcam.20140406.01.html">View</a></li>
<li class="show">D. Ortigueira, \Fractional Calculus for Scientists and Engineers", Book: Springer Dordrecht Heidelberg London New York, 2011.</li>
<li class="show">D. Ortigueira, J. A. Tenreiro Machado, \What is a fractional derivative?", Journal of Computational Physics, Vol. 293, pp. 4-13, 2015. <a href="https://doi.org/10.1016/j.jcp.2014.07.019">https://doi.org/10.1016/j.jcp.2014.07.019</a></li>
<li class="show">Katugampola, Udita N. "A new fractional derivative with classical properties."&nbsp;<em>arXiv preprint arXiv:1410.6535</em>(2014). <a href="https://arxiv.org/abs/1410.6535">View</a></li>
<li class="show">Khalil, M. Al Horani, M. Abu Hammad, \Geometric meaning of conformable derivative via fractional cords", Journal of Mathematics and Computer Science, Vol. 19, Issue 4, pp. 241-245, 2019. <a href="https://doi.org/10.22436/jmcs.019.04.03">https://doi.org/10.22436/jmcs.019.04.03</a></li>
<li class="show">E. Tarasov, No nonlocality. No fractional derivative, Communications in Non- linear Science and Numerical Simulation, Vol. 62 pp. 157-163, 2018. <a href="https://doi.org/10.1016/j.cnsns.2018.02.019">https://doi.org/10.1016/j.cnsns.2018.02.019</a></li>
<li class="show">Khalil, H. Abu Shaab, \Solution of some conformable fractional differential equation", International Journal of Pure and Applied Mathematics, Vol. 103, Issue 4, pp. 667-673, 2015. <a href="https://doi.org/10.12732/ijpam.v103i4.6">http://dx.doi.org/10.12732/ijpam.v103i4.6</a></li>
<li class="show">Avci, B. B. Iskender Eroglu, N. Ozdemir, \Conformable heat equation on a radial symmetric plate", Thermal Science, Vol. 21, Issue 2, pp. 819-826, 2017. <a href="https://doi.org/10.2298/tsci160427302a">http://dx.doi.org/10.2298/tsci160427302a</a></li>
<li class="show">P. Allahverdiev, H. Tuna, Y. Yal_cinkaya, \Conformable fractional Sturm-Liouville equation", Math. Meth. Appl. Sci., pp. 119, 2019. <a href="https://doi.org/10.1002/mma.5595">https://doi.org/10.1002/mma.5595</a></li>
<li class="show">Dixit, A. Ujlayan, \Analytical solution to linear conformable fractional partial differential equations", World Scienti_c News, Vol. 113, pp. 49-56, 2018. <a href="https://doi.org/10.2298/TSCI160427302A">https://doi.org/10.2298/TSCI160427302A</a></li>
<li class="show">Avci, B. B. Iskender Eroglu, N. Ozdemir, \The dirichlet problem of a conformable advection-diffusion equation", Thermal Science, Vol. 21, Issue 1A, pp. 9-18, 2017. <a href="https://doi.org/10.2298/TSCI160421235A">https://doi.org/10.2298/TSCI160421235A</a></li>
<li class="show">Avci, B. B. Iskender Eroglu, N. Ozdemir, \Conformable fractional wave-like equation on a radial symmetric plate", A. Babiarz et al. (eds.), Theory and Applications of Non-integer Order Systems, Lecture Notes in Electrical Engineering, 8th Conference on Non-integer Order Calculus and Its Applications, Zakopane, Poland 407. <a href="https://doi.org/10.1007/978-3-319-45474-0">https://doi.org/10.1007/978-3-319-45474-0</a></li>
<li class="show">C_ . Yaslan, F. Mutlu, \Numerical solution of the conformable differential equations via shifted Legendre polynomials", International Journal of Computer Mathematics, 2019. <a href="http://dx.doi.org/10.1080/00207160.2019.1605059">http://dx.doi.org/10.1080/00207160.2019.1605059</a></li>
<li class="show">Unal, A. Gokdo_gan, \Solution of conformable fractional ordinary differential equations via differential transform method", Optik, Vol. 128, pp. 264-273, 2017. <a href="http://dx.doi.org/10.1016/j.ijleo.2016.10.031">http://dx.doi.org/10.1016/j.ijleo.2016.10.031</a></li>
<li class="show">Acan, D. Baleanu, \A new numerical technique for solving fractional partial differential equations", Miskolc Mathematical Notes, Vol. 19, Issue 1, pp. 3-18, 2018. <a href="https://doi.org/10.18514/MMN.2018.2291">https://doi.org/10.18514/MMN.2018.2291</a></li>
<li class="show">Acan, O. Firat, Y. Keskin, \Conformable variational iteration method, conformable fractional reduced dfferential transform method and conformable homotopy analysis method for non-linear fractional partial differential equations", Waves in Random and Complex Media, 2018. <a href="https://doi.org/10.1080/17455030.2018.1502485">https://doi.org/10.1080/17455030.2018.1502485</a></li>
</ol>

Downloads

Published

2019-11-07

Issue

Section

Research Article

How to Cite

[1]
R. Pashaei, M. S. Asgari, and A. Pishkoo, “Conformable Derivatives in Laplace Equation and Fractional Fourier Series Solution”, Int. Ann. Sci., vol. 9, no. 1, pp. 1–7, Nov. 2019.