Conformable Derivatives in Laplace Equation and Fractional Fourier Series Solution
DOI:
https://doi.org/10.21467/ias.9.1.1-7Abstract
In this paper the solution of conformable Laplace equation, \frac{\partial^{\alpha}u(x,y)}{\partial x^{\alpha}}+ \frac{\partial^{\alpha}u(x,y)}{\partial y^{\alpha}}=0, where 1 < α ≤ 2 has been deduced by using fractional fourier series and separation of variables method. For special cases α =2 (Laplace's equation), α=1.9, and α=1.8 conformable fractional fourier coefficients have been calculated. To calculate coefficients, integrals are of type "conformable fractional integral".
Keywords:
Fractional fourier series, Conformable fractional derivative, Fractional Laplace's equationDownloads
References
<li class="show">Khalil, M. Al Horani, A. Yousef, M. Sababheh, \A new definition of fractional derivative", Journal of Computational and Applied Mathematics, Vol. 264, pp. 65-70, 2014. <a href="https://doi.org/10.1016/j.cam.2014.01.002">View</a></li>
<li class="show">Khalil, I. Abu Hammad, \Fractional fourier series with applications", American Journal of Computational and Applied Mathematics, Vol. 4, Issue 6, pp. 187-191, 2014. <a href="http://article.sapub.org/10.5923.j.ajcam.20140406.01.html">View</a></li>
<li class="show">D. Ortigueira, \Fractional Calculus for Scientists and Engineers", Book: Springer Dordrecht Heidelberg London New York, 2011.</li>
<li class="show">D. Ortigueira, J. A. Tenreiro Machado, \What is a fractional derivative?", Journal of Computational Physics, Vol. 293, pp. 4-13, 2015. <a href="https://doi.org/10.1016/j.jcp.2014.07.019">https://doi.org/10.1016/j.jcp.2014.07.019</a></li>
<li class="show">Katugampola, Udita N. "A new fractional derivative with classical properties." <em>arXiv preprint arXiv:1410.6535</em>(2014). <a href="https://arxiv.org/abs/1410.6535">View</a></li>
<li class="show">Khalil, M. Al Horani, M. Abu Hammad, \Geometric meaning of conformable derivative via fractional cords", Journal of Mathematics and Computer Science, Vol. 19, Issue 4, pp. 241-245, 2019. <a href="https://doi.org/10.22436/jmcs.019.04.03">https://doi.org/10.22436/jmcs.019.04.03</a></li>
<li class="show">E. Tarasov, No nonlocality. No fractional derivative, Communications in Non- linear Science and Numerical Simulation, Vol. 62 pp. 157-163, 2018. <a href="https://doi.org/10.1016/j.cnsns.2018.02.019">https://doi.org/10.1016/j.cnsns.2018.02.019</a></li>
<li class="show">Khalil, H. Abu Shaab, \Solution of some conformable fractional differential equation", International Journal of Pure and Applied Mathematics, Vol. 103, Issue 4, pp. 667-673, 2015. <a href="https://doi.org/10.12732/ijpam.v103i4.6">http://dx.doi.org/10.12732/ijpam.v103i4.6</a></li>
<li class="show">Avci, B. B. Iskender Eroglu, N. Ozdemir, \Conformable heat equation on a radial symmetric plate", Thermal Science, Vol. 21, Issue 2, pp. 819-826, 2017. <a href="https://doi.org/10.2298/tsci160427302a">http://dx.doi.org/10.2298/tsci160427302a</a></li>
<li class="show">P. Allahverdiev, H. Tuna, Y. Yal_cinkaya, \Conformable fractional Sturm-Liouville equation", Math. Meth. Appl. Sci., pp. 119, 2019. <a href="https://doi.org/10.1002/mma.5595">https://doi.org/10.1002/mma.5595</a></li>
<li class="show">Dixit, A. Ujlayan, \Analytical solution to linear conformable fractional partial differential equations", World Scienti_c News, Vol. 113, pp. 49-56, 2018. <a href="https://doi.org/10.2298/TSCI160427302A">https://doi.org/10.2298/TSCI160427302A</a></li>
<li class="show">Avci, B. B. Iskender Eroglu, N. Ozdemir, \The dirichlet problem of a conformable advection-diffusion equation", Thermal Science, Vol. 21, Issue 1A, pp. 9-18, 2017. <a href="https://doi.org/10.2298/TSCI160421235A">https://doi.org/10.2298/TSCI160421235A</a></li>
<li class="show">Avci, B. B. Iskender Eroglu, N. Ozdemir, \Conformable fractional wave-like equation on a radial symmetric plate", A. Babiarz et al. (eds.), Theory and Applications of Non-integer Order Systems, Lecture Notes in Electrical Engineering, 8th Conference on Non-integer Order Calculus and Its Applications, Zakopane, Poland 407. <a href="https://doi.org/10.1007/978-3-319-45474-0">https://doi.org/10.1007/978-3-319-45474-0</a></li>
<li class="show">C_ . Yaslan, F. Mutlu, \Numerical solution of the conformable differential equations via shifted Legendre polynomials", International Journal of Computer Mathematics, 2019. <a href="http://dx.doi.org/10.1080/00207160.2019.1605059">http://dx.doi.org/10.1080/00207160.2019.1605059</a></li>
<li class="show">Unal, A. Gokdo_gan, \Solution of conformable fractional ordinary differential equations via differential transform method", Optik, Vol. 128, pp. 264-273, 2017. <a href="http://dx.doi.org/10.1016/j.ijleo.2016.10.031">http://dx.doi.org/10.1016/j.ijleo.2016.10.031</a></li>
<li class="show">Acan, D. Baleanu, \A new numerical technique for solving fractional partial differential equations", Miskolc Mathematical Notes, Vol. 19, Issue 1, pp. 3-18, 2018. <a href="https://doi.org/10.18514/MMN.2018.2291">https://doi.org/10.18514/MMN.2018.2291</a></li>
<li class="show">Acan, O. Firat, Y. Keskin, \Conformable variational iteration method, conformable fractional reduced dfferential transform method and conformable homotopy analysis method for non-linear fractional partial differential equations", Waves in Random and Complex Media, 2018. <a href="https://doi.org/10.1080/17455030.2018.1502485">https://doi.org/10.1080/17455030.2018.1502485</a></li>
</ol>
Downloads
Published
Issue
Section
How to Cite
License
Author(s) retains full copyright of their article and grants non-exclusive publishing right to International Annals of Science and its publisher "AIJR (India)". Author(s) can archive pre-print, post-print, and published version/PDF to any open access, institutional repository, social media, or personal website provided that Published source must be acknowledged with citation and link to publisher version.
Click here for more information on Copyright policy
Click here for more information on Licensing policy