Differential Perspectives Between miRNA and lncRNA in Light of Biogenesis and Functions: A Review
DOI:
https://doi.org/10.21467/exr.3.1.5147Abstract
The central dogma is suggested that deoxyribonucleic acid is translated into ribonucleic acid (RNA) and then into protein. It is considered that 2–3% of the genomic DNA in a functionally active cell, is transcribed to protein-coding RNA. The presence of noncoding transcripts has been neglected many a time as cellular DNA and transcript noises, however, increasing proof proposes that a very important part of these non-coding transcripts is functionally effective as RNA molecules. The non-coding transcripts of up to 100 bases are known as small non-coding RNA that comprises tRNA, miRNA, snoRNA, piwi-interacting RNA (pi-RNA), etc. Interestingly, rRNA features about 6.9 kb, though these are not considered long-non-coding RNAs. However, RNA molecules that are over 200 bases long (ranging between 0.8 to 10 kb) are known as long non-coding RNA (lncRNA). It does not have open reading frames (with some exceptions), 3`- untranslated regions (3’-UTRs), and these RNAs are devoid of any translation-termination regions. However, these may be capped, spliced, and polyadenylated as RNA molecules and play a major role in factor regulation, neoplastic cell invasion, chromatin granule transforming, and cell differentiation. Downregulation of lncRNA is responsible for numerous diseases in mammals. miRNAs are mature transcripts of 22 nt in length and function as antisense regulators of other RNAs. They play role in post-transcriptional factors and are involved in differentiation, proliferation, immune response, cell growth, and caspase-mediated cell death. Downregulation in miRNA expression has a necessary role in many diseases, together with cancers.
Keywords:
Biological Implications, lncRNAs, miRNADownloads
References
Achawanantakun, R., Chen, J., Sun, Y., & Zhang, Y. (2015). LncRNA-ID: Long non-coding RNA IDentification using balanced random forests. Bioinformatics, 31(24), 3897–3905. https://doi.org/10.1093/BIOINFORMATICS/BTV480
Ahmed, F., Kaundal, R., & Raghava, G. P. S. (2013). PHDcleav: A SVM based method for predicting human Dicer cleavage sites using sequence and secondary structure of miRNA precursors. BMC Bioinformatics, 14(14), 1–11. https://doi.org/10.1186/1471-2105-14-S14-S9
Aich, M., & Chakraborty, D. (2020). Role of lncRNAs in stem cell maintenance and differentiation. Current Topics in Developmental Biology, 138, 73–112. https://doi.org/10.1016/BS.CTDB.2019.11.003
Ariel, I., Tykocinski, M. L., De Groot, N., Hochberg, A., Sughayer, M., Fellig, Y., Pizov, G., Ayesh, S., Podeh, D., Libdeh, B. A., Levy, C., & Birman, T. (2000). The imprinted H19 gene is a marker of early recurrence in human bladder carcinoma. Molecular Pathology , 53(6), 320–323. https://doi.org/10.1136/MP.53.6.320
Bachellerie, J. P., Cavaillé, J., & Hüttenhofer, A. (2002). The expanding snoRNA world. Biochimie, 84(8), 775–790. https://doi.org/10.1016/S0300-9084(02)01402-5
Benetatos, L., Hatzimichael, E., Dasoula, A., Dranitsaris, G., Tsiara, S., Syrrou, M., Georgiou, I., & Bourantas, K. L. (2010). CpG methylation analysis of the MEG3 and SNRPN imprinted genes in acute myeloid leukemia and myelodysplastic syndromes. Leukemia Research, 34(2), 148–153. https://doi.org/10.1016/J.LEUKRES.2009.06.019
Betel, D., Koppal, A., Agius, P., Sander, C., & Leslie, C. (2010). Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biology, 11(8), 1–14. https://doi.org/10.1186/gb-2010-11-8-r90
Bhan, A., Hussain, I., Ansari, K. I., Kasiri, S., Bashyal, A., & Mandal, S. S. (2013). Antisense Transcript Long Noncoding RNA (lncRNA) HOTAIR is Transcriptionally Induced by Estradiol. Journal of Molecular Biology, 425(19), 3707–3722. https://doi.org/10.1016/J.JMB.2013.01.022
Calin, G. A., Dumitru, C. D., Shimizu, M., Bichi, R., Zupo, S., Noch, E., Aldler, H., Rattan, S., Keating, M., Rai, K., Rassenti, L., Kipps, T., Negrini, M., Bullrich, F., & Croce, C. M. (2002). Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 99(24), 15524–15529. https://doi.org/10.1073/pnas.242606799
Carninci, P., Kasukawa, T., Katayama, S., Gough, J., Frith, M. C., Maeda, N., Oyama, R., Ravasi, T., Lenhard, B., Wells, C., Kodzius, R., Shimokawa, K., Bajic, V. B., Brenner, S. E., Batalov, S., Forrest, A. R. R., Zavolan, M., Davis, M. J., Wilming, L. G., … Hayashizaki, Y. (2005). The transcriptional landscape of the mammalian genome. Science, 309(5740), 1559–1563. https://doi.org/10.1126/science.1112014
Chen, L., Heikkinen, L., Wang, C., Yang, Y., Sun, H., & Wong, G. (2019). Trends in the development of miRNA bioinformatics tools. Briefings in Bioinformatics, 20(5), 1836–1852. https://doi.org/10.1093/BIB/BBY054
Chen, W., Böcker, W., Brosius, J., & Tiedge, H. (1997). Expression of neural BC200 RNA in human tumours. The Journal of Pathology, 183(3). https://doi.org/10.1002/(SICI)1096-9896(199711)183:3%3C345::AID-PATH930%3E3.0.CO;2-8
Cho, W. C. S., Chow, A. S. C., & Au, J. S. K. (2011). MiR-145 inhibits cell proliferation of human lung adenocarcinoma by targeting EGFR and NUDT1. RNA Biology , 8(1), 125–131. https://doi.org/10.4161/RNA.8.1.14259
Cimmino, A., Calin, G. A., Fabbri, M., Iorio, M. V., Ferracin, M., Shimizu, M., Wojcik, S. E., Aqeilan, R. I., Zupo, S., Dono, M., Rassenti, L., Alder, H., Volinia, S., Liu, C. G., Kipps, T. J., Negrini, M., & Croce, C. M. (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proceedings of the National Academy of Sciences of the United States of America, 102(39), 13944–13949. https://doi.org/10.1073/pnas.0506654102
Clark, M. B., Johnston, R. L., Inostroza-Ponta, M., Fox, A. H., Fortini, E., Moscato, P., Dinger, M. E., & Mattick, J. S. (2012). Genome-wide analysis of long noncoding RNA stability. Genome Research, 22(5), 885–898. https://doi.org/10.1101/GR.131037.111
Davidow, L. S., Breen, M., Duke, S. E., Samollow, P. B., McCarrey, J. R., & Lee, J. T. (2007). The search for a marsupial XIC reveals a break with vertebrate synteny. Chromosome Research, 15(2), 137–146. https://doi.org/10.1007/s10577-007-1121-6
Dinger, M. E., Amara, P. P., Mercer, T. R., Pang, K. C., Bruce, S. J., Gardiner, B. B., Askarian-Amiri, M. E., Ru, K., Soldà, G., Simons, C., Sunkin, S. M., Crowe, M. L., Grimmond, S. M., Perkins, A. C., & Mattick, J. S. (2008). Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Research, 18(9), 1433–1445. https://doi.org/10.1101/GR.078378.108
Fanelli, G. N., Gasparini, P., Coati, I., Cui, R., Pakula, H., Chowdhury, B., Valeri, N., Loupakis, F., Kupcinskas, J., Cappellesso, R., & Fassan, M. (2018). LONG-NONCODING RNAs in gastroesophageal cancers. Non-Coding RNA Research, 3(4), 195–212. https://doi.org/10.1016/J.NCRNA.2018.10.001
Fang, J. H., Zhou, H. C., Zeng, C., Yang, J., Liu, Y., Huang, X., Zhang, J. P., Guan, X. Y., & Zhuang, S. M. (2011). MicroRNA-29b suppresses tumor angiogenesis, invasion, and metastasis by regulating matrix metalloproteinase 2 expression. Hepatology, 54(5), 1729–1740. https://doi.org/10.1002/HEP.24577
Garzon, R., & Croce, C. M. (2008). MicroRNAs in normal and malignant hematopoiesis. Current Opinion in Hematology, 15(4), 352–358. https://doi.org/10.1097/MOH.0B013E328303E15D
Garzon, R., Marcucci, G., & Croce, C. M. (2010). Targeting microRNAs in cancer: rationale, strategies and challenges. Nature Reviews Drug Discovery , 9(10), 775–789. https://doi.org/10.1038/nrd3179
Gatto, G., Rossi, A., Rossi, D., Kroening, S., Bonatti, S., & Mallardo, M. (2008). Epstein–Barr virus latent membrane protein 1 trans-activates miR-155 transcription through the NF-κB pathway. Nucleic Acids Research, 36(20), 6608–6619. https://doi.org/10.1093/NAR/GKN666
Gejman, R., Batista, D. L., Zhong, Y., Zhou, Y., Zhang, X., Swearingen, B., Stratakis, C. A., Hedley-Whyte, E. T., & Klibanski, A. (2008). Selective Loss of MEG3 Expression and Intergenic Differentially Methylated Region Hypermethylation in the MEG3/DLK1 Locus in Human Clinically Nonfunctioning Pituitary Adenomas. The Journal of Clinical Endocrinology & Metabolism, 93(10), 4119–4125. https://doi.org/10.1210/JC.2007-2633
Geng, Y. J., Xie, S. L., Li, Q., Ma, J., & Wang, G. Y. (2011). Large Intervening Non-Coding RNA HOTAIR is Associated with Hepatocellular Carcinoma Progression. Journal of International Medical Research, 39(6), 2119–2128. https://doi.org/10.1177/147323001103900608
Girard, A., Sachidanandam, R., Hannon, G. J., & Carmell, M. A. (2006). A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature , 442(7099), 199–202. https://doi.org/10.1038/nature04917
Gong, J., Shao, D., Xu, K., Lu, Z., Lu, Z. J., Yang, Y. T., & Zhang, Q. C. (2018). RISE: a database of RNA interactome from sequencing experiments. Nucleic Acids Research, 46(D1), D194–D201. https://doi.org/10.1093/NAR/GKX864
Grillone, K., Riillo, C., Riillo, C., Scionti, F., Rocca, R., Rocca, R., Tradigo, G., Guzzi, P. H., Alcaro, S., Di Martino, M. T., Tagliaferri, P., Tagliaferri, P., & Tassone, P. (2020). Non-coding RNAs in cancer: platforms and strategies for investigating the genomic “dark matter.” Journal of Experimental & Clinical Cancer Research , 39(1), 1–19. https://doi.org/10.1186/S13046-020-01622-X
Gupta, R. A., Shah, N., Wang, K. C., Kim, J., Horlings, H. M., Wong, D. J., Tsai, M. C., Hung, T., Argani, P., Rinn, J. L., Wang, Y., Brzoska, P., Kong, B., Li, R., West, R. B., Van De Vijver, M. J., Sukumar, S., & Chang, H. Y. (2010). Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature , 464(7291), 1071–1076. https://doi.org/10.1038/nature08975
Guttman, M., Russell, P., Ingolia, N. T., Weissman, J. S., & Lander, E. S. (2013). Ribosome profiling provides evidence that large noncoding RNAs do not encode proteins. Cell, 154(1), 240–251. https://doi.org/10.1016/j.cell.2013.06.009
Han, S., Liang, Y., Ma, Q., Xu, Y., Zhang, Y., Du, W., Wang, C., & Li, Y. (2019). LncFinder: an integrated platform for long non-coding RNA identification utilizing sequence intrinsic composition, structural information and physicochemical property. Briefings in Bioinformatics, 20(6), 2009–2027. https://doi.org/10.1093/BIB/BBY065
Harrow, J., Denoeud, F., Frankish, A., Reymond, A., Chen, C.-K., Chrast, J., Lagarde, J., Gilbert, J. G., Storey, R., Swarbreck, D., Rossier, C., Ucla, C., Hubbard, T., Antonarakis, S. E., & Guigo, R. (2006). GENCODE: producing a reference annotation for ENCODE. Genome Biology , 7(1), 1–9. https://doi.org/10.1186/GB-2006-7-S1-S4
Hensley, A. P., & McAlinden, A. (2021). The role of microRNAs in bone development. Bone, 143, 115760. https://doi.org/10.1016/J.BONE.2020.115760
Hon, C. C., Ramilowski, J. A., Harshbarger, J., Bertin, N., Rackham, O. J. L., Gough, J., Denisenko, E., Schmeier, S., Poulsen, T. M., Severin, J., Lizio, M., Kawaji, H., Kasukawa, T., Itoh, M., Burroughs, A. M., Noma, S., Djebali, S., Alam, T., Medvedeva, Y. A., … Forrest, A. R. R. (2017). An atlas of human long non-coding RNAs with accurate 5′ ends. Nature, 543(7644), 199–204. https://doi.org/10.1038/nature21374
Hüttenhofer, A., Brosius, J., & Bachellerie, J. P. (2002). RNomics: identification and function of small, non-messenger RNAs. Current Opinion in Chemical Biology, 6(6), 835–843. https://doi.org/10.1016/S1367-5931(02)00397-6
Iorio, M. V., Ferracin, M., Liu, C. G., Veronese, A., Spizzo, R., Sabbioni, S., Magri, E., Pedriali, M., Fabbri, M., Campiglio, M., Ménard, S., Palazzo, J. P., Rosenberg, A., Musiani, P., Volinia, S., Nenci, I., Calin, G. A., Querzoli, P., Negrini, M., & Croce, C. M. (2005). MicroRNA Gene Expression Deregulation in Human Breast Cancer. Cancer Research, 65(16), 7065–7070. https://doi.org/10.1158/0008-5472.CAN-05-1783
Jendrzejewski, J., He, H., Radomska, H. S., Li, W., Tomsic, J., Liyanarachchi, S., Davuluri, R. V., Nagy, R., & De La Chapelle, A. (2012). The polymorphism rs944289 predisposes to papillary thyroid carcinoma through a large intergenic noncoding RNA gene of tumor suppressor type. Proceedings of the National Academy of Sciences of the United States of America, 109(22), 8646–8651. https://doi.org/10.1073/pnas.120565410
Ji, P., Diederichs, S., Wang, W., Böing, S., Metzger, R., Schneider, P. M., Tidow, N., Brandt, B., Buerger, H., Bulk, E., Thomas, M., Berdel, W. E., Serve, H., & Müller-Tidow, C. (2003). MALAT-1, a novel noncoding RNA, and thymosin β4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene , 22(39), 8031–8041. https://doi.org/10.1038/sj.onc.1206928
John, B., Enright, A. J., Aravin, A., Tuschl, T., Sander, C., & Marks, D. S. (2004). Human MicroRNA Targets. PLOS Biology, 2(11), e363. https://doi.org/10.1371/JOURNAL.PBIO.0020363
Jones-Rhoades, M. W., & Bartel, D. P. (2004). Computational Identification of Plant MicroRNAs and Their Targets, Including a Stress-Induced miRNA. Molecular Cell, 6(14), 787–799. https://doi.org/10.1016/J.MOLCEL.2004.05.027
Junker, A., Krumbholz, M., Eisele, S., Mohan, H., Augstein, F., Bittner, R., Lassmann, H., Wekerle, H., Hohlfeld, R., & Meinl, E. (2009). MicroRNA profiling of multiple sclerosis lesions identifies modulators of the regulatory protein CD47. Brain, 132(12), 3342–3352. https://doi.org/10.1093/BRAIN/AWP300
Kiriakidou, M., Nelson, P. T., Kouranov, A., Fitziev, P., Bouyioukos, C., Mourelatos, Z., & Hatzigeorgiou, A. (2004). A combined computational-experimental approach predicts human microRNA targets. Genes & Development, 18(10), 1165–1178. https://doi.org/10.1101/GAD.1184704
Klenov, M. S., Lavrov, S. A., Stolyarenko, A. D., Ryazansky, S. S., Aravin, A. A., Tuschl, T., & Gvozdev, V. A. (2007). Repeat-associated siRNAs cause chromatin silencing of retrotransposons in the Drosophila melanogaster germline. Nucleic Acids Research, 35(16), 5430–5438. https://doi.org/10.1093/NAR/GKM576
Kong, L., Zhang, Y., Ye, Z. Q., Liu, X. Q., Zhao, S. Q., Wei, L., & Gao, G. (2007). CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Research, 35(suppl_2), W345–W349. https://doi.org/10.1093/NAR/GKM391
Kong, W., He, L., Coppola, M., Guo, J., Esposito, N. N., Coppola, D., & Cheng, J. Q. (2010). MicroRNA-155 Regulates Cell Survival, Growth, and Chemosensitivity by Targeting FOXO3a in Breast Cancer. Journal of Biological Chemistry, 285(23), 17869–17879. https://doi.org/10.1074/JBC.M110.101055
Krek, A., Grün, D., Poy, M. N., Wolf, R., Rosenberg, L., Epstein, E. J., MacMenamin, P., Da Piedade, I., Gunsalus, K. C., Stoffel, M., & Rajewsky, N. (2005). Combinatorial microRNA target predictions. Nature Genetics, 37(5), 495–500. https://doi.org/10.1038/ng1536
Krüger, J., & Rehmsmeier, M. (2006). RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Research, 34(suppl_2), W451–W454. https://doi.org/10.1093/NAR/GKL243
Lai, E. C. (2003). microRNAs: Runts of the Genome Assert Themselves. Current Biology, 13(23), R925–R936. https://doi.org/10.1016/J.CUB.2003.11.017
Leão, R., Albersen, M., Looijenga, L. H. J., Tandstad, T., Kollmannsberger, C., Murray, M. J., Culine, S., Coleman, N., Belge, G., Hamilton, R. J., & Dieckmann, K. P. (2021). Circulating MicroRNAs, the Next-Generation Serum Biomarkers in Testicular Germ Cell Tumours: A Systematic Review. European Urology, 80(4), 456–466. https://doi.org/10.1016/J.EURURO.2021.06.006
Lee, J., & Kang, H. (2022). Role of MicroRNAs and Long Non-Coding RNAs in Sarcopenia. Cells, 11(2), 187. https://doi.org/10.3390/CELLS11020187
Lewis, B. P., Burge, C. B., & Bartel, D. P. (2005). Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets. Cell, 1(120), 15–20. https://doi.org/10.1016/J.CELL.2004.12.035
Li, A., Zhang, J., & Zhou, Z. (2014). PLEK: a tool for predicting long non-coding RNAs and messenger RNAs based on an improved k-mer scheme. BMC Bioinformatics, 15: 311. https://doi.org/10.1186/1471-2105-15-311
Lin, Q., Shi, Y., Liu, Z., Mehrpour, M., Hamaï, A., & Gong, C. (2022). Non-coding RNAs as new autophagy regulators in cancer progression. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1868(1), 166293. https://doi.org/10.1016/J.BBADIS.2021.166293
Lorenz, R., Bernhart, S. H., Höner zu Siederdissen, C., Tafer, H., Flamm, C., Stadler, P. F., & Hofacker, I. L. (2011). ViennaRNA Package 2.0. Algorithms for Molecular Biology, 6(1), 1–14. https://doi.org/10.1186/1748-7188-6-26
Losko, M., Kotlinowski, J., & Jura, J. (2016). Long noncoding RNAs in metabolic syndrome related disorders. Mediators of Inflammation, 2016. https://doi.org/10.1155/2016/5365209
Lund, E., Güttinger, S., Calado, A., Dahlberg, J. E., & Kutay, U. (2004). Nuclear Export of MicroRNA Precursors. Science, 303(5654), 95–98. https://doi.org/DOI: 10.1126/science.1090599
Lv, X. Bin, Lian, G. Y., Wang, H. R., Song, E., Yao, H., & Wang, M. H. (2013). Long Noncoding RNA HOTAIR Is a Prognostic Marker for Esophageal Squamous Cell Carcinoma Progression and Survival. PLOS ONE, 8(5), e63516. https://doi.org/10.1371/JOURNAL.PONE.0063516
Ma, L., Cao, J., Liu, L., Du, Q., Li, Z., Zou, D., Bajic, V. B., & Zhang, Z. (2019). LncBook: a curated knowledgebase of human long non-coding RNAs. Nucleic Acids Research, 47(5), 2699–2699. https://doi.org/10.1093/NAR/GKZ073
MacRae, I. J., Zhou, K., Li, F., Repic, A., Brooks, A. N., Cande, W. Z., Adams, P. D., & Doudna, J. A. (2006). Structural basis for double-stranded RNA processing by Dicer. Science, 311(5758), 195–198. https://doi.org/10.1126/science.1121638
Mariner, P. D., Walters, R. D., Espinoza, C. A., Drullinger, L. F., Wagner, S. D., Kugel, J. F., & Goodrich, J. A. (2008). Human Alu RNA Is a Modular Transacting Repressor of mRNA Transcription during Heat Shock. Molecular Cell, 29(4), 499–509. https://doi.org/10.1016/J.MOLCEL.2007.12.013
Martins, M., Rosa, A., Guedes, L. C., Fonseca, B. V., Gotovac, K., Violante, S., Mestre, T., Coelho, M., RosaMá, M. M., Martin, E. R., Vance, J. M., Outeiro, T. F., Wang, L., Borovecki, F., Ferreira, J. J., & Oliveira, S. A. (2011). Convergence of miRNA Expression Profiling, α-Synuclein Interacton and GWAS in Parkinson’s Disease. PLOS ONE, 6(10), e25443. https://doi.org/10.1371/JOURNAL.PONE.0025443
Matouk, I. J., DeGroot, N., Mezan, S., Ayesh, S., Abu-Lail, R., Hochberg, A., & Galun, E. (2007). The H19 Non-Coding RNA Is Essential for Human Tumor Growth. PLOS ONE, 2(9), e845. https://doi.org/10.1371/JOURNAL.PONE.0000845
Mercer, T. R., Dinger, M. E., & Mattick, J. S. (2009). Long non-coding RNAs: insights into functions. Nature Reviews Genetics , 10(3), 155–159. https://doi.org/10.1038/nrg2521
Morishita, A., Oura, K., Tadokoro, T., Fujita, K., Tani, J., & Masaki, T. (2021). MicroRNAs in the Pathogenesis of Hepatocellular Carcinoma: A Review. Cancers , 13(3), 514. https://doi.org/10.3390/CANCERS13030514
Mourtada-Maarabouni, M., Pickard, M. R., Hedge, V. L., Farzaneh, F., & Williams, G. T. (2008). GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene , 28(2), 195–208. https://doi.org/10.1038/onc.2008.373
Ng, S. Y., & Stanton, L. W. (2013). Long non-coding RNAs in stem cell pluripotency. Wiley Interdisciplinary Reviews: RNA, 4(1), 121–128. https://doi.org/10.1002/WRNA.1146
Ozcan, G., Ozpolat, B., Coleman, R. L., Sood, A. K., & Lopez-Berestein, G. (2015). Preclinical and clinical development of siRNA-based therapeutics. Advanced Drug Delivery Reviews, 87, 108–119. https://doi.org/10.1016/J.ADDR.2015.01.007
Papadopoulos, G. L., Reczko, M., Simossis, V. A., Sethupathy, P., & Hatzigeorgiou, A. G. (2009). The database of experimentally supported targets: a functional update of TarBase. Nucleic Acids Research, 37(suppl_1), D155–D158. https://doi.org/10.1093/NAR/GKN809
Pierce, J. B., Zhou, H., Simion, V., & Feinberg, M. W. (2022). Long Noncoding RNAs as Therapeutic Targets. In S. Carpenter (Ed.), Advances in Experimental Medicine and Biology (Vol. 1363, pp. 161–175). Springer. https://doi.org/10.1007/978-3-030-92034-0_9
Romero-Barrios, N., Legascue, M. F., Benhamed, M., Ariel, F., & Crespi, M. (2018). Splicing regulation by long noncoding RNAs. Nucleic Acids Research, 46(5), 2169–2184. https://doi.org/10.1093/NAR/GKY095
Rusinov, V., Baev, V., Minkov, I. N., & Tabler, M. (2005). MicroInspector: a web tool for detection of miRNA binding sites in an RNA sequence. Nucleic Acids Research, 33(suppl_2), W696–W700. https://doi.org/10.1093/NAR/GKI364
Saito, K., Ishizuka, A., Siomi, H., & Siomi, M. C. (2005). Processing of Pre-microRNAs by the Dicer-1–Loquacious Complex in Drosophila Cells. PLOS Biology, 3(7), e235. https://doi.org/10.1371/JOURNAL.PBIO.0030235
Sethupathy, P., Corda, B., & Hatzigeorgiou, A. G. (2006). TarBase: A comprehensive database of experimentally supported animal microRNA targets. RNA, 12(2), 192–197. https://doi.org/10.1261/RNA.2239606
Small, E. M., & Olson, E. N. (2011). Pervasive roles of microRNAs in cardiovascular biology. Nature , 469(7330), 336–342. https://doi.org/10.1038/nature09783
Staněk, D., & Neugebauer, K. M. (2006). The Cajal body: a meeting place for spliceosomal snRNPs in the nuclear maze. Chromosoma , 115(5), 343–354. https://doi.org/10.1007/S00412-006-0056-6
Statello, L., Guo, C. J., Chen, L. L., & Huarte, M. (2020). Gene regulation by long non-coding RNAs and its biological functions. Nature Reviews Molecular Cell Biology , 22(2), 96–118. https://doi.org/10.1038/s41580-020-00315-9
Sun, L., Liu, H., Zhang, L., & Meng, J. (2015). lncRScan-SVM: A Tool for Predicting Long Non-Coding RNAs Using Support Vector Machine. PLOS ONE, 10(10), e0139654. https://doi.org/10.1371/JOURNAL.PONE.0139654
Sun, M., Jin, F. yan, Xia, R., Kong, R., Li, J. hai, Xu, T. peng, Liu, Y. wen, Zhang, E. bao, Liu, X. hua, & De, W. (2014). Decreased expression of long noncoding RNA GAS5 indicates a poor prognosis and promotes cell proliferation in gastric cancer. BMC Cancer, 14(1), 1–12. https://doi.org/10.1186/1471-2407-14-319
The RNAcentral Consortium. (2019). RNAcentral: a hub of information for non-coding RNA sequences. Nucleic Acids Research, 47(D1), D221–D229. https://doi.org/10.1093/NAR/GKY1034
Toden, S., & Goel, A. (2022). Non-coding RNAs as liquid biopsy biomarkers in cancer. British Journal of Cancer, 126(3), 351–360. https://doi.org/10.1038/s41416-021-01672-8
Wang, L., Zeng, X., Chen, S., Ding, L., Zhong, J., Zhao, J. C., Wang, L., Sarver, A., Koller, A., Zhi, J., Ma, Y., Yu, J., Chen, J., & Huang, H. (2013). BRCA1 is a negative modulator of the PRC2 complex. The EMBO Journal, 32(11), 1584–1597. https://doi.org/10.1038/EMBOJ.2013.95
Wienholds, E., & Plasterk, R. H. A. (2005). MicroRNA function in animal development. FEBS Letters, 579(26), 5911–5922. https://doi.org/10.1016/J.FEBSLET.2005.07.070
Wolff, T., Menssen, R., Hammel, J., & Bindereif, A. (1994). Splicing function of mammalian U6 small nuclear RNA: conserved positions in central domain and helix I are essential during the first and second step of pre-mRNA splicing. Proceedings of the National Academy of Sciences, 91(3), 903–907. https://doi.org/10.1073/PNAS.91.3.903
Xia, T., O’Hara, A., Araujo, I., Barreto, J., Carvalho, E., Sapucaia, J. B., Ramos, J. C., Luz, E., Pedroso, C., Manrique, M., Toomey, N. L., Brites, C., Dittmer, D. P., & Harrington, W. J. (2008). EBV MicroRNAs in Primary Lymphomas and Targeting of CXCL-11 by ebv-mir-BHRF1-3. Cancer Research, 68(5), 1436–1442. https://doi.org/10.1158/0008-5472.CAN-07-5126
Yi, R., Qin, Y., Macara, I. G., & Cullen, B. R. (2003). Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes & Development, 17(24), 3011–3016. https://doi.org/10.1101/GAD.1158803
Yoshikawa, M., Peragine, A., Mee, Y. P., & Poethig, R. S. (2005). A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Genes & Development, 19(18), 2164–2175. https://doi.org/10.1101/GAD.1352605
Zhao, J., Song, X., & Wang, K. (2016). lncScore: alignment-free identification of long noncoding RNA from assembled novel transcripts. Scientific Reports 2016 6:1, 6(1), 1–12. https://doi.org/10.1038/srep34838
Zhao, J., Sun, B. K., Erwin, J. A., Song, J. J., & Lee, J. T. (2008). Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science, 322(5902), 750–756. https://doi.org/10.1126/science.1163045
Zhao, Y., & Srivastava, D. (2007). A developmental view of microRNA function. Trends in Biochemical Sciences, 32(4), 189–197. https://doi.org/10.1016/j.tibs.2007.02.006
Zheng, H. T., Shi, D. B., Wang, Y. W., Li, X. X., Xu, Y., Tripathi, P., Gu, W. L., Cai, G. X., & Cai, S. J. (2014). High expression of lncRNA MALAT1 suggests a biomarker of poor prognosis in colorectal cancer. International Journal of Clinical and Experimental Pathology, 7(6), 3174. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4097248/
Downloads
Published
Issue
Section
How to Cite
License
Copyright (c) 2023 Shilpa Tewari, Bhawanpreet Kaur, Kanwaljit Rana, Chandra Sekhar Mukhopadhyay
![Creative Commons License](http://i.creativecommons.org/l/by-nc/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The author(s) retains full copyright of their article and grants non-exclusive publishing right to Extensive Reviews and its publisher AIJR (India). Author(s) can archive pre-print, post-print, and published version/PDF to any open access, institutional repository, social media, or personal website provided that Published source must be acknowledged with citation and link to publisher version.
Click here for more information on Copyright policy
Click here for more information on Licensing policy