Micropropagation of Cassava (Manihot esculenta Crantz)

Review

Authors

  • Ashebir Seyoum Feyisa Department of Plant Science, College of Agriculture and Natural Resource, Bonga University, P.O. Box 334, Bonga https://orcid.org/0000-0001-9801-5574

DOI:

https://doi.org/10.21467/exr.1.1.4486

Abstract

Cassava is a vital crop to the food security of millions of people worldwide, particularly in Sub-Saharan Africa. Because the crop produced a reasonable yield on marginal soils, it could help relieve global hunger. As a result, increasing cassava output and its quality attributes are significant. However, the low multiplication rate of this main crop has resulted in the delayed dissemination of improved varieties among farmers. As a result, tissue culture techniques may be a feasible solution for overcoming these challenges. Cassava in vitro propagation had done using either the shoots multiplication technique or somatic embryogenesis. However, the shoot multiplication approach is preferable since it retains clonal fidelity. Plant regeneration via somatic embryogenesis or organogenesis entailed the use of numerous basal media containing various plant growth hormones. Several studies found that each type of cassava clone required a unique protocol to achieve optimal shoot initiation, shoot multiplication, root induction, and elongation. This review describes recent research on cassava micropropagation that makes use of a variety of experimental systems. While each of these systems focuses on a different aspect of technique, they can be significant in understanding the in vitro production of cassava planting material.

Keywords:

Acclimatization, Cassava, Micropropagation

Downloads

Download data is not yet available.

References

Alves, A. A. C. (2002). Cassava botany and physiology. Cassava: biology, production and utilization, 1, 67-89.

Nassar, N. M., & Ortiz, R. (2009). 5 Cassava Genetic Resources: Manipulation for Crop Improvement. Plant breeding reviews, 31, 247.

FAO. 2018 Food Outlook - Biannual Report on Global Food Markets – November 2018. Rome. 104 pp.

Jansson, C., Westerbergh, A., Zhang, J., Hu, X. and Sun, C., 2009. Cassava, a potential biofuel crop in (the) People’s Republic of China. Applied Energy, 86, pp.S95-S99.

Haggblade, S., Djurfeldt, A. A., Nyirenda, D. B., Lodin, J. B., Brimer, L., Chiona, M., & Weber, M. (2012). Cassava commercialization in Southeastern Africa. Journal of Agribusiness in Developing and Emerging Economies.

Stapleton, G. (2012). Global starch market outlook and competing starch raw materials for starches by product segment and region. Cassava Starch World, 2012, 22-24.

Ceballos, H., Iglesias, C. A., Perez, J. C., & Dixon, A. G. (2004). Cassava breeding: opportunities and challenges. Plant molecular biology, 56(4), 503-516.

Leihner, D. (2002). Agronomy and cropping systems. Cassava: Biology, production and utilization, 91-113.

Demeke, Y., Tefera, W., Dechassa, N., & Abebie, B. (2014). Effects of plant growth regulators on in vitro cultured nodal explants of cassava (Manihot esculenta Crantz) clones. African Journal of Biotechnology, 13(28).

Escobar, R. H., Andez, C. H., Larrahondo, N., Ospina, G., Restrepo, J., Noz, L. M., & Roca, W. M. (2006). Tissue culture for farmers: Participatory adaptation of low-input cassava propagation in Colombia. Experimental Agriculture, 42(1), 103-120.

Kartha, K. K., Gamborg, O. L., Constabel, F., & Shyluk, J. P. (1974). Regeneration of cassava plants from apical meristems. Plant Science Letters, 2(2), 107-113.

Medina, R. D., Faloci, M. M., Gonzalez, A. M., & Mroginski, L. A. (2007). In vitro cultured primary roots derived from stem segments of cassava (Manihot esculenta) can behave like storage organs. Annals of botany, 99(3), 409-423.

Nweke, F. I., & Bokanga, M. (1994, March). Importance of cassava processing for production in sub-Saharan Africa. In International Workshop on Cassava Safety 375 (pp. 401-412).

Cock, J. H., Porto, M. C., & El‐Sharkawy, M. A. (1985). Water Use Efficiency of Cassava. III. Influence of Air Humidity and Water Stress on Gas Exchange of Field Grown Cassava 1. Crop Science, 25(2), 265-272.

Kawano, K., Fukuda, W. M. G., & Cenpukdee, U. (1987). Genetic and environmental effects on dry matter content of cassava root 1. Crop Science, 27(1), 69-74.

El-Sharkawy, M. A. (2003). Cassava biology and physiology. Plant molecular biology, 53(5), 621-641.

Ceballos, H., Ramirez, J., Bellotti, A. C., Jarvis, A., & Alvarez, E. (2011). Adaptation of cassava to changing climates. Crop adaptation to climate change, 411, 425.

Henry, G., & Hershey, C. (2002). Cassava in South America and the Caribbean. Cassava: Biology, production and utilization, 17-40.

Bull, S. E., Ndunguru, J., Gruissem, W., Beeching, J. R., & Vanderschuren, H. (2011). Cassava: constraints to production and the transfer of biotechnology to African laboratories. Plant cell reports, 30(5), 779-787.

Nkouaya Mbanjo, E. G., Rabbi, I. Y., Ferguson, M. E., Kayondo, S. I., Eng, N. H., Tripathi, L., & Egesi, C. (2020). Technological innovations for improving cassava production in sub-Saharan Africa. Frontiers in Genetics, 11, 1829.

Mangena, P. (2021). Synthetic seeds and their role in agriculture: status and progress in sub-Saharan Africa.

FAO, IFAD, UNICEF, WFP & WHO. 2019. The State of Food Security and Nutrition in the World 2019. Safeguarding against economic slowdowns and downturns [online]. Rome, FAO. [Cited 7 April 2021]. http://www.fao.org/state-of-food-security-nutrition

Ray, D.K., Mueller, N.D., West, P.C. and Foley, J.A., 2013. Yield trends are insufficient to double global crop production by 2050. PloS one, 8(6), p.e66428.

Spielman, D.J. and Pandya-Lorch, R. eds., 2009. Millions fed: Proven successes in agricultural development. Intl Food Policy Res Inst.

AFSA (2020): Seeds of neo-colonialism – Why the GMO promoters get it so wrong about Africa [online]. Available at: https://afsafrica.org/seeds-of-neo-colonialism-why-the-gmo-promoters-get-it-so-wrong-about-africa/ [accessed: April 8, 2021].

Brink, J. A., Woodward, B. R., & DaSilva, E. J. (1998). Plant biotechnology: a tool for development in Africa. Electronic Journal of Biotechnology, 1(3), 14-15.

Abebaw, Y. M., Tobiaw, D. C., Abate, B. A., Eshete, B. K., Seymour, S. K., & Tesfaye, K. (2021). Plant Tissue Culture Research and Development in Ethiopia: A Case Study on Current Status, Opportunities, and Challenges. Advances in Agriculture, 2021.

Ogero, K. O., Mburugu, G. N., Mwangi, M., Ombori, O., & Ngugi, M. (2012). In vitro micropropagation of cassava through low cost tissue culture.

Santana, M. A., Romay, G., Matehus, J., Villardón, J. L., & Demey, J. R. (2009). Simple and low-cost strategy for micropropagation of cassava (Manihot esculenta Crantz). African Journal of Biotechnology, 8(16).

Okinyi, O. K. (2012). Low cost tissue culture of selected cassava (Manihot esculenta Crantz) and sweet potato (Ipomoea Batatas (l) Lam.) varieties (Doctoral dissertation, Department of Agricultural Science and Technology, School of Agriculture and Enterprise Development, Kenyatta University).

Ayalew, M., Vellaiyappan, S., & Gebre, W. (2017). Micro-propagation of cassava [Manihot esculenta Crantz] using bulla flour [Ensete Ventricosum [Welw.], Cheesman] as an alternative source of agar in plant tissue culture media. International Journal of Research Studies in Science, Engineering and Technology, 4, 23-34.

Kidulile, C. E., Alakonya, A. E., Ndunguru, J. C., & Ateka, E. M. (2018). Cost effective medium for in vitro propagation of Tanzanian cassava landraces. African Journal of Biotechnology, 17(25), 787-794.

Lebot, V., Champagne, A., Malapa, R., & Shiley, D. (2009). NIR determination of major constituents in tropical root and tuber crop flours. Journal of Agricultural and Food Chemistry, 57(22), 10539-10547.

Anis, M., Faisal, M., & Singh, S. K. (2003). Micropropagation of mulberry (Morus alba L.) through in vitro culture of shoot tip and nodal explants. Plant Tissue Cult, 13(1), 47-51.

Raemakers, C. J. J. M., Sofiari, E., Jacobsen, E., & Visser, R. G. F. (1997). Regeneration and transformation of cassava. Euphytica, 96(1), 153-161.

Konan, N. K., Schöpke, C., Carcamo, R., Beachy, R. N., & Fauquet, C. (1997). An efficient mass propagation system for cassava (Manihot esculenta Crantz) based on nodal explants and axillary bud-derived meristems. Plant Cell Reports, 16(7), 444-449.

Danso, K. E. (1997). In-Vitro Propagation of Selected Cassava (Manihot Esculenta Crantz) Cultivars using Multiple Shoot Induction and Somatic Embryogenesis (Doctoral dissertation, University of Ghana).

Syombua, E. D., Wanyonyi, C. N., Adero, M. O., Mbinda, W. M., Ngugi, M. P., Alakonya, A. E., & Oduor, R. O. (2019). Explant type and hormone regime influences somatic embryogenesis and regeneration of cassava. African Journal of Biotechnology, 18(25), 532-539.

Sukmadjaja, D., & Widhiastuti, H. (2011). Effects of plant growth regulators on shoot multiplication and root induction of cassava varieties culture in vitro. BIOTROPIA-The Southeast Asian Journal of Tropical Biology, 18(1).

Abdel, N. A. E. M. (2013). In vitro propagation of cassava plants (Doctoral dissertation, Ain Shams University).

Onwubiku, I. O. I., & Onuoch, C. I. (2007). Micropropagation of cassava (Manihot esculantum Crantz) using different concentrations of benzyaminiopurine (BAP). Journal of Engineering and Applied Sciences, 2(7), 1229-1231.

Beyene, D. (2009). Micropropagation of Selected Cassava Varieties (Manihot esculenta Crantz) from Meristem Culture (Doctoral dissertation, Addis Ababa University).

Sessou, A. F., Kahia, J. W., Houngue, J. A., Ateka, E. M., Dadjo, C., & Ahanhanzo, C. (2020). In vitro propagation of three mosaic disease resistant cassava cultivars. BMC biotechnology, 20(1), 1-13.

Yandia, S. P., Gandonou, C. B., Silla, S., Zinga, I., & Toukourou, F. (2018). Response of four cultivars of cassava (Manihot esculenta Crantz) plantlets free of cassava mosaic virus to micropropagation in different media. African Journal of Biotechnology, 17(1), 9-16.

Opabode, J. T. (2017). Enhanced mass regeneration of pro-vitamin a cassava (Manihot esculenta Crantz) varieties through multiple shoot induction from enlarged axillary buds. BioTechnologia. Journal of Biotechnology Computational Biology and Bionanotechnology, 98(4).

Sesay, J. V., Ayeh, K. O., Norman, P. E., & Acheampong, E. (2016). Shoot nodal culture and virus indexing of selected local and improved genotypes of cassava (Manihot esculenta) from Sierra Leone. International Journal of Biotechnology and Molecular Biology Research, 7(2), 20-28.

Abdoulaye, F. A. Y. E., SAGNA, M., KANE, P. D., & Djibril, S. A. N. E. (2015). Effects of different hormones on organogenesis in vitro of some varieties of cassava (Manihot esculenta Crantz) grown in Senegal. African Journal of Plant Science, 9(8), 305-312.

Kabir, M. H., Mamun, A. N. K., Roy, P. K., Islam, M. R., Jahan, M. T., & Talukder, S. U. (2015). In vitro propagation of cassava (Manihot esculenta Crantz). Nuclear science and applications, 24(1-2), 23-28.

Perveen, A., & Mansuri, S. (2015). Rapid propagation of a biodiesel plant cassava (Manihot esculenta Crantz) through tissue culture. International Journal of Biology and Biotechnology, 12, 369-372.

Shiji, R., George, J., Sunitha, S., & Muthuraj, R. (2015a). Micropropagation for rapid multiplication of planting material in cassava (Manihot esculenta Crantz). Journal of Root Crops, 40(1), 23-30.

Mapayi, E. F., Ojo, D. K., Oduwaye, O. A., & Porbeni, J. B. O. (2013). Optimization of in-vitro propagation of cassava (Manihot esculenta Crantz) genotypes. Journal of Agricultural Science, 5(3), 261.

Acedo, V. Z. (2006). Improvement of in vitro techniques for rapid meristem development and mass propagation of Philippine cassava (Manihot esculenta Crantz). Bhagwat, B., Vieiral, L. G., & Erickson, L. R. (1996). Stimulation of in vitro shoot proliferation from nodal explants of cassava by thidiazuron, benzyladenine and gibberellic acid. Plant cell, tissue and organ culture, 46(1), 1-7.

Bhojwani, S. S., & Razdan, M. K. (1986). Plant tissue culture: theory and practice. Elsevier. Bull, S. E., Ndunguru, J., Gruissem, W., Beeching, J. R., & Vanderschuren, H. (2011). Cassava: constraints to production and the transfer of biotechnology to African laboratories. Plant cell reports, 30(5), 779-787.

George, E. F., Hall, M. A., & De Klerk, G. J. (2008). Plant tissue culture procedure-background. In Plant propagation by tissue culture (pp. 1-28). Springer, Dordrecht.

Fan, M., Liu, Z., Zhou, L., Lin, T., Liu, Y., & Luo, L. (2011). Effects of plant growth regulators and saccharide on in vitro plant and tuberous root regeneration of cassava (Manihot esculenta Crantz). Journal of plant growth regulation, 30(1), 11-19.

Mahdi, H., & Edward, R. (2017). In vitro Propagation of Malaysian Cassava (Manihot esculenta Crantz) Variety through Low Cost Tissue Culture Media. International Journal of Environment, Agriculture and Biotechnology, 2(4), 238889.

Nawaz, M., Ullah, I., Iqbal, N., IQBAL, M. Z., & Javed, M. A. (2013). Improving in vitro leaf disk regeneration system of sugarcane (Saccharum officinarum L.) with concurrent shoot/root induction from somatic embryos. Turkish Journal of Biology, 37(6), 726-732.

Shiji, R., George, J., Sunitha, S., Vandhana, A., & Muthuraj, R. (2015b). Effect of NAA and IBA on in vitro regeneration and hardening in cassava (Manihot esculenta Crantz.). Journal of Root Crops, 40(2), 12-20.

Méndez-Hernández, H. A., Ledezma-Rodríguez, M., Avilez-Montalvo, R. N., Juárez-Gómez, Y. L., Skeete, A., Avilez-Montalvo, J., & Loyola-Vargas, V. M. (2019). Signaling overview of plant somatic embryogenesis. Frontiers in plant science, 10, 77.

Gao, F., Peng, C., Wang, H., Tretyakova, I. N., Nosov, A. M., Shen, H., & Yang, L. (2020). Key Techniques for Somatic Embryogenesis and Plant Regeneration of Pinus koraiensis. Forests, 11(9), 912.

Simões, C., Albarello, N., Callado, C. H., Castro, T. C. D., & Mansur, E. (2010). Somatic embryogenesis and plant regeneration from callus cultures of Cleome rosea Vahl. Brazilian Archives of Biology and Technology, 53, 679-686.

Danso, K. E., & Elegba, W. (2017). Optimisation of somatic embryogenesis in cassava. In Biotechnologies for Plant Mutation Breeding (pp. 73-89). Springer, Cham.

Stamp, J. A., & Henshaw, G. G. (1982). Somatic embryogenesis in cassava. Zeitschrift für Pflanzenphysiologie, 105(2), 183-187.

Osorio, M., Gámez, E., Molina, S., & Infante, D. (2012). Evaluation of cassava plants generated by somatic embryogenesis at different stages of development using molecular markers. Electronic Journal of Biotechnology, 15(4), 3-3.

Rossin, C. B., & Rey, M. E. C. (2011). Effect of explant source and auxins on somatic embryogenesis of selected cassava (Manihot esculenta Crantz) cultivars. South African Journal of Botany, 77(1), 59-65.

Mongomake, K., Doungous, O., Khatabi, B., & Fondong, V. N. (2015). Somatic embryogenesis and plant regeneration of cassava (Manihot esculenta Crantz) landraces from Cameroon. SpringerPlus, 4(1), 1-12.

Marigi, E. N., Masanga, J. O., Munga, T. L., Karanja, L. S., Ngugi, M. P., Thagana, W. M., & Oduor, R. O. (2016). Optimisation of a somatic embryogenesis and transformation protocol for farmer-preferred cassava cultivars in Kenya. African Crop Science Journal, 24(1), 35-44.

Ibrahim, A. B., Heredia, F. F., Pinheiro, C. B., Aragao, F. J. L., & Campos, F. A. P. (2008). Optimization of somatic embryogenesis and selection regimes for particle bombardment of friable embryogenic callus and somatic cotyledons of cassava (Manihot esculenta Crantz). African Journal of Biotechnology, 7(16).

PieroNgugi, M., Okoth, O. R., Ombori, R., Murugi, J., Jalemba, A., & Chelule, R. (2015). Plant Regeneration of Kenyan Cassava (Manihot Esculenta Crantz) Genotypes. Advances in Crop Science and Technology.

Osena, G. O. (2017). Molecular Characterization of Cassava (Manihot Esculenta Crantz.) Plants Regenerated Through Organogenesis and Somatic Embryogenesis (Doctoral dissertation, University of Nairobi).

Pawlicki, N., Sangwan, R. S., Sangwan-Norreel, B., & Koffi Konan, N. (1998). The use of PCR techniques to detect genetic variations in Cassava (Manihot esculenta L. Crantz): minisatellite and RAPD analysis (No. IAEA-TECDOC--1047).

Lineberger, R. D. (2006). The many dimensions of plant tissue culture research. Texas A&M University, College Station, TX, 77843.

Downloads

Published

2021-12-10

Issue

Section

Review Article

How to Cite

[1]
A. S. Feyisa, “Micropropagation of Cassava (Manihot esculenta Crantz): Review”, Extsv. Rev., vol. 1, no. 1, pp. 49–57, Dec. 2021.