The Possibilities of Finding a Cure for HIV

A Literature Review

Authors

DOI:

https://doi.org/10.21467/ajgr.16.1.23-37

Abstract

The human immunodeficiency virus (HIV) is a major worldwide health concern, affecting millions of people globally, and when untreated progresses into acquired immune deficiency syndrome (AIDS). With the availability of antiretroviral therapy (ART), HIV infection is defined as a manageable, but not curable, chronic health condition. ART inhibits viral replication and prevents HIV transmission but does not eliminate the virus due to viral latency in memory T cells, exacerbated by the rise in drug resistant mutations (DRMs), so lifelong treatment and monitoring is required. In this review, we discuss the justifications and research approaches towards finding a “cure” for HIV i.e. complete elimination or control of the virus without the need for further treatment. The two main barriers to developing a cure for HIV infection are the property of HIV viral latency and high mutation rate of the virus.  A few cases of HIV have been cured through bone marrow transplants to treat acute myeloid leukaemia, where the donors had rare mutations in the CCR5 gene, required for viral entry.  More viable approaches to a cure include the “Shock and Kill” method which aims to use reverse viral latency allowing these cells to be detected and destroyed with ART,  and the “Block and Lock” method aims to block viral transcription in HIV-infected latent cells, preventing a rebound viral replication after the cessation of ART.  The possibility of vaccination has been widely explored, but an effective HIV vaccine has yet to be developed after more than 40 years of the pandemic.  Currently, the “Block and Lock” approaches appear to be the most favourable, possibly in conjunction with other recently developed interventions such as passive immunisation with broadly neutralizing antibodies.  However, approaches taken to develop a cure for HIV cannot be detached from ethical concerns which need to be acknowledged and navigated.

Keywords:

Human immunodeficiency virus, viral latency, HIV treatment

Downloads

Download data is not yet available.

References

World Health Organisation. "HIV and AIDS." who.int. https://www.who.int/news-room/fact-sheets/detail/hiv-aids (accessed Feb. 19, 2025).

Be in the KNOW. "HIV and young people." beintheknow.org. https://www.beintheknow.org/understanding-hiv-epidemic/community/hiv-and-young-people (accessed Feb. 19, 2025).

Be in the KNOW. "Origin of HIV and AIDS." beintheknow.org. https://www.beintheknow.org/understanding-hiv-epidemic/context/origin-hiv-and-aids (accessed Feb. 19, 2025).

L. Levintov and H. Vashisth, "Structural and computational studies of HIV-1 RNA," RNA Biology, vol. 21, no. 1, pp. 1-32, Dec. 2023, doi: 10.1080/15476286.2023.2289709. DOI: https://doi.org/10.1080/15476286.2023.2289709

N. R. Faria et al., "The early spread and epidemic ignition of HIV-1 in human populations," Science, vol. 346, no. 6205, pp. 56-61, Oct. 2014, doi: 10.1126/science.1256739. DOI: https://doi.org/10.1126/science.1256739

Avert. "HIV timeline." avert.org. https://timeline.avert.org/ (accessed Feb. 19, 2025).

BioRender, "BioRender Scientific Imaging and Illustration Software," 2025. [Online]. Available: https://app.biorender.com.

Centers for Disease Control and Prevention. "HIV." cdc.gov. https://www.cdc.gov/hiv/index.html (accessed Feb. 19, 2025).

A. K. Prokopovich, I. S. Litvinova, A. E. Zubkova, and D. V. Yudkin, "CXCR4 is a potential target for anti-HIV gene therapy," International Journal of Molecular Sciences, vol. 25, no. 2, p. 1187, Jan. 2024, doi: 10.3390/ijms25021187. DOI: https://doi.org/10.3390/ijms25021187

T. Ndung’u, J. M. McCune, and S. G. Deeks, "Why and where an HIV cure is needed and how it might be achieved," Nature, vol. 576, no. 7787, pp. 397-405, Dec. 2019, doi: 10.1038/s41586-019-1841-8. DOI: https://doi.org/10.1038/s41586-019-1841-8

S. S. Forsythe et al., "Twenty years of antiretroviral therapy for people living with HIV: global costs, health achievements, economic benefits," Health Affairs, vol. 38, no. 7, pp. 1163-1172, Jul. 2019, doi: 10.1377/hlthaff.2018.05391. DOI: https://doi.org/10.1377/hlthaff.2018.05391

N. Azzman et al., "Pharmacological advances in anti-retroviral therapy for human immunodeficiency virus-1 infection: A comprehensive review," Reviews in Medical Virology, vol. 34, no. 2, p. e2529, Mar. 2024, doi: 10.1002/rmv.2529. DOI: https://doi.org/10.1002/rmv.2529

M. S. Saag et al., "Antiretroviral drugs for treatment and prevention of HIV infection in adults: 2018 recommendations of the International Antiviral Society-USA Panel," JAMA, vol. 320, no. 4, pp. 379-396, Jul. 2018, doi: 10.1001/jama.2018.8431. DOI: https://doi.org/10.1001/jama.2018.8431

M. Künzli and D. Masopust, "CD4+ T cell memory," Nature Immunology, vol. 24, no. 6, pp. 903-914, Jun. 2023, doi: 10.1038/s41590-023-01510-4. DOI: https://doi.org/10.1038/s41590-023-01510-4

Q. Chen et al., "HIV associated cell death: Peptide-induced apoptosis restricts viral transmission," Frontiers in Immunology, vol. 14, p. 1096759, Feb. 2023, doi: 10.3389/fimmu.2023.1096759. DOI: https://doi.org/10.3389/fimmu.2023.1096759

J. C. Ekabe, A. N. Clinton, E. K. Agyei, and J. Kehbila, "Role of apoptosis in HIV pathogenesis," Advances in Virology, vol. 2022, p. 8148119, Apr. 2022, doi: 10.1155/2022/8148119. DOI: https://doi.org/10.1155/2022/8148119

T. C. Chou, N. S. Maggirwar, and M. D. Marsden, "HIV Persistence, Latency, and Cure Approaches: Where Are We Now?," Viruses, vol. 16, no. 7, p. 1163, Jul. 2024, doi: 10.3390/v16071163. DOI: https://doi.org/10.3390/v16071163

J. T. Kufera et al., "CD4+ T cells with latent HIV-1 have reduced proliferative responses to T cell receptor stimulation," Journal of Experimental Medicine, vol. 221, no. 3, p. e20231511, Jan. 2024, doi: 10.1084/jem.20231511. DOI: https://doi.org/10.1084/jem.20231511

S. A. Yukl et al., "HIV latency in isolated patient CD4(+) T cells may be due to blocks in HIV transcriptional elongation, completion, and splicing," Science Translational Medicine, vol. 10, no. 430, p. eaap9927, Feb. 2018, doi: 10.1126/scitranslmed.aap9927. DOI: https://doi.org/10.1126/scitranslmed.aap9927

N. Ikeogu, O. Ajibola, R. Zayats, and T. T. Murooka, "Identifying physiological tissue niches that support the HIV reservoir in T cells," mBio, vol. 14, no. 5, pp. e02053-23, Sep. 2023, doi: 10.1128/mbio.02053-23. DOI: https://doi.org/10.1128/mbio.02053-23

A. A. R. Antar et al., "Longitudinal study reveals HIV-1–infected CD4+ T cell dynamics during long-term antiretroviral therapy," The Journal of Clinical Investigation, vol. 130, no. 7, pp. 3543-3559, Mar. 2020, doi: 10.1172/JCI135953. DOI: https://doi.org/10.1172/JCI135953

D. S. Ruelas and W. C. Greene, "An integrated overview of HIV-1 latency," Cell, vol. 155, no. 3, pp. 519-29, Oct. 2013, doi: 10.1016/j.cell.2013.09.044. DOI: https://doi.org/10.1016/j.cell.2013.09.044

M. Sankaranantham, "HIV - Is a cure possible?," Indian Journal of Sexually Transmitted Diseases and AIDS, vol. 40, no. 1, pp. 1-5, Jun. 2019, doi: 10.4103/ijstd.IJSTD_112_15. DOI: https://doi.org/10.4103/ijstd.IJSTD_112_15

J. Y. Yeo, G.-R. Goh, C. T.-T. Su, and S. K.-E. Gan, "The determination of HIV-1 RT mutation rate, its possible allosteric effects, and its implications on drug resistance," Viruses, vol. 12, no. 3, p. 297, Mar. 2020, doi: 10.3390/v12030297. DOI: https://doi.org/10.3390/v12030297

S. W. Kao et al., "Prevalence of drug resistance mutations in HIV-infected individuals with low-level viraemia under combination antiretroviral therapy: an observational study in a tertiary hospital in Northern Taiwan, 2017-19," The Journal of Antimicrobial Chemotherapy, vol. 76, no. 3, pp. 722-728, Feb. 2021, doi: 10.1093/jac/dkaa510. DOI: https://doi.org/10.1093/jac/dkaa510

Y. Shu et al., "Prevalence of drug resistance mutations in low-level viremia patients under antiretroviral therapy in Southwestern China: a cross-sectional study " Journal of Antimicrobial Chemotherapy, p. dkaf017, Jan. 2025, doi: 10.1093/jac/dkaf017. DOI: https://doi.org/10.1093/jac/dkaf017

D. S. Clutter, M. R. Jordan, S. Bertagnolio, and R. W. Shafer, "HIV-1 drug resistance and resistance testing," Infection, Genetics and Evolution, vol. 46, pp. 292-307, Dec. 2016, doi: 10.1016/j.meegid.2016.08.031. DOI: https://doi.org/10.1016/j.meegid.2016.08.031

World Health Organisation, "HIV drug resistance report 2024," WHO, Geneva, 978-92-4-008631-9, Feb. 2024. Accessed: Feb. 19, 2025. [Online]. Available: https://www.who.int/publications/i/item/9789240086319

S. SeyedAlinaghi et al., "Current ART, determinants for virologic failure and implications for HIV drug resistance: an umbrella review," AIDS Research and Therapy, vol. 20, no. 1, p. 74, Oct. 2023, doi: 10.1186/s12981-023-00572-6. DOI: https://doi.org/10.1186/s12981-023-00572-6

S. G. Kamau et al., "The level of antiretroviral therapy (ART) adherence among orphan children and adolescents living with HIV/AIDS: A systematic review and meta-analysis," PLoS One, vol. 19, no. 2, p. e0295227, Feb. 2024, doi: doi.org/10.1371/journal.pone.0295227. DOI: https://doi.org/10.1371/journal.pone.0295227

S. Kamote, N. A. Tesha, and B. F. Sunguya, "Factors associated with adherence to antiretroviral therapy among HIV-positive adolescents and young adult patients attending HIV care and treatment clinic at Bombo Hospital in Tanga region-Tanzania," PLoS One, vol. 30, no. 1, p. e0316188, Jan. 2025, doi: 10.1371/journal.pone.0316188. DOI: https://doi.org/10.1371/journal.pone.0316188

F. G. Abdul-Samed, A. Abubakari, B. G. Yussif, and G. A. Aninanya, "Determinants of adherence to antiretroviral therapy among people living with HIV receiving care in health facilities in Tamale Metropolis, Ghana," BMC Infectious Diseases, vol. 24, no. 1, p. 1379, Dec. 2024, doi: 10.1186/s12879-024-10240-3. DOI: https://doi.org/10.1186/s12879-024-10240-3

P. Arashiro et al., "Adherence to antiretroviral therapy in people living with HIV with moderate or severe mental disorder," Scientific Reports, vol. 13, p. 3569, Mar. 2023, doi: 10.1038/s41598-023-30451-z. DOI: https://doi.org/10.1038/s41598-023-30451-z

B. K. Tadese, F. Hennessy, P. Salmon, T. Holbrook, and G. Prajapati, "Adherence to antiretroviral therapy and its association with quality of life among people with HIV in the United States," AIDS Care, vol. 36, no. 12, pp. 1869-1881, Dec. 2024, doi: 10.1080/09540121.2024.2391439. DOI: https://doi.org/10.1080/09540121.2024.2391439

NHS. "Treatment: HIV and AIDS." nhs.uk. https://www.nhs.uk/conditions/hiv-and-aids/treatment/ (accessed Feb. 19, 2025).

M. Aljofan, A. Oshibayeva, I. Moldaliyev, Y. Saruarov, T. Maulenkul, and A. Gaipov, "The rate of medication nonadherence and influencing factors: a systematic review," Electronic Journal of General Medicine, vol. 20, no. 3, p. em471, May. 2023, doi: 10.29333/ejgm/12946. DOI: https://doi.org/10.29333/ejgm/12946

L. Jörimann et al., "Absence of proviral human immunodeficiency virus (HIV) type 1 evolution in early-treated individuals with HIV switching to dolutegravir monotherapy during 48 weeks," The Journal of Infectious Diseases, vol. 228, no. 7, pp. 907-918, Oct. 2023, doi: 10.1093/infdis/jiad292. DOI: https://doi.org/10.1093/infdis/jiad292

J. F. d. C. Pinto et al., "Transmission of Dolutegravir resistance in treatment-naive individuals with HIV-1: A cohort study," The Brazilian Journal of Infectious Diseases, vol. 29, no. 2, p. 104513, Mar. 2025, doi: 10.1016/j.bjid.2025.104513. DOI: https://doi.org/10.1016/j.bjid.2025.104513

A. Carr, N. E. Mackie, R. Paredes, and K. Ruxrungtham, "HIV drug resistance in the era of contemporary antiretroviral therapy: a clinical perspective," Antiviral Therapy, vol. 28, no. 5, p. 13596535231201162, Oct. 2023, doi: 10.1177/13596535231201162. DOI: https://doi.org/10.1177/13596535231201162

M. Sharma, M. Nag, and G. Q. D. Prete, "Minimally Modified HIV-1 Infection of Macaques: Development, Utility, and Limitations of Current Models," Viruses, vol. 16, no. 10, p. 1618, Oct. 2024, doi: 10.3390/v16101618. DOI: https://doi.org/10.3390/v16101618

J. K. Schmidt, M. R. Reynolds, T. G. Golos, and I. I. Slukvin, "CRISPR/Cas9 genome editing to create nonhuman primate models for studying stem cell therapies for HIV infection," Retrovirology, vol. 19, p. 17, Aug. 2022, doi: 10.1186/s12977-022-00604-5. DOI: https://doi.org/10.1186/s12977-022-00604-5

C. Carvalho, A. Gaspar, A. Knight, and L. Vicente, "Ethical and Scientific Pitfalls Concerning Laboratory Research with Non-Human Primates, and Possible Solutions," Animals (Basel), vol. 9, no. 1, p. 12, Dec. 2018, doi: 10.3390/ani9010012. DOI: https://doi.org/10.3390/ani9010012

Q. Xiao et al., "How can we establish animal models of HIV-associated lymphoma?," Animals Models and Experimental Medicine, vol. 7, no. 4, pp. 484-496, Aug. 2024, doi: 10.1002/ame2.12409. DOI: https://doi.org/10.1002/ame2.12409

C. Zhang, L. A. Zaman, L. Y. Poluektova, S. Gorantla, H. E. Gendelman, and P. K. Dash, "Humanized Mice for Studies of HIV-1 Persistence and Elimination," Pathogens, vol. 12, no. 7, p. 879, Jun. 2023, doi: 10.3390/pathogens12070879. DOI: https://doi.org/10.3390/pathogens12070879

A. Brzyska, J. Bogucka, M. K. Bojarska, N. A. Domańska, and H. Piecewicz-Szczęsna, "Hematopoietic stem cell transplantation in the treatment of HIV infection – comparison of “Berlin patient”, “London patient” and “Dusseldorf patient”," European Journal of Clinical and Experimental Medicine, vol. 21, no. 4, pp. 880–886, Dec. 2023, doi: 10.15584/ejcem.2023.4.8. DOI: https://doi.org/10.15584/ejcem.2023.4.8

J. Hsu et al., "HIV-1 remission and possible cure in a woman after haplo-cord blood transplant," Cell, vol. 186, no. 6, pp. 1115-1126.e8, Mar. 2023, doi: 10.1016/j.cell.2023.02.030. DOI: https://doi.org/10.1016/j.cell.2023.02.030

J. H. Ellwanger, B. Kulmann-Leal, V. d. L. Kaminski, A. G. Rodrigues, M. A. d. S. Bragatte, and J. A. B. Chies, "Beyond HIV infection: Neglected and varied impacts of CCR5 and CCR5Δ32 on viral diseases," Virus Research, vol. 286, p. 198040, Sep. 2020, doi: 10.1016/j.virusres.2020.198040. DOI: https://doi.org/10.1016/j.virusres.2020.198040

Y. Xie, S. Zhan, W. Ge, and P. Tang, "The potential risks of C-C chemokine receptor 5-edited babies in bone development," Bone Research, vol. 7, no. 1, p. 4, Jan. 2019, doi: 10.1038/s41413-019-0044-0. DOI: https://doi.org/10.1038/s41413-019-0044-0

NHS. "Stem cell and bone marrow transplants." nhs.uk. https://www.nhs.uk/conditions/stem-cell-transplant/ (accessed Feb. 19, 2025).

R. K. Gupta et al., "HIV-1 remission following CCR5Δ32/Δ32 haematopoietic stem-cell transplantation," Nature, vol. 568, no. 7751, pp. 244-248, Mar. 2019, doi: 10.1038/s41586-019-1027-4. DOI: https://doi.org/10.1038/s41586-019-1027-4

Z. Zhou et al., "Characterization of a CXCR4 antagonist TIQ-15 with dual tropic HIV entry inhibition properties," PloS Pathogens, vol. 20, no. 8, p. e1012448, Aug. 2024, doi: 10.1371/journal.ppat.1012448. DOI: https://doi.org/10.1371/journal.ppat.1012448

M. H. Marichannegowda et al., "Transmission of highly virulent CXCR4 tropic HIV-1 through the mucosal route in an individual with a wild-type CCR5 genotype," eBioMedicine, vol. 109, p. 105410, Oct. 2024, doi: 10.1016/j.ebiom.2024.105410. DOI: https://doi.org/10.1016/j.ebiom.2024.105410

N. V. Kim, G. McErlean, S. Yu, I. Kerridge, M. Greenwood, and R. D. A. Lourenco, "Healthcare Resource Utilization and Cost Associated with Allogeneic Hematopoietic Stem Cell Transplantation: A Scoping Review," Transplantation and Cellular Therapy, vol. 30, no. 5, pp. 542.e1-542.e29, May. 2024, doi: doi: 10.1016/j.jtct.2024.01.084. DOI: https://doi.org/10.1016/j.jtct.2024.01.084

A. Khan, N. Paneerselvam, and B. R. Lawson, "Antiretrovirals to CCR5 CRISPR/Cas9 gene editing - A paradigm shift chasing an HIV cure," Clinical Immunology, vol. 255, p. 109741, Oct. 2023, doi: 10.1016/j.clim.2023.109741. DOI: https://doi.org/10.1016/j.clim.2023.109741

H. T. Pham and T. Mesplède, "The latest evidence for possible HIV-1 curative strategies," Drugs Context, vol. 7, p. 212522, Feb. 2018, doi: 10.7573/dic.212522. DOI: https://doi.org/10.7573/dic.212522

K. Matsuda and K. Maeda, "HIV Reservoirs and Treatment Strategies toward Curing HIV Infection," International Journal of Molecular Sciences, vol. 25, no. 5, p. 2621, Feb. 2024, doi: 10.3390/ijms25052621. DOI: https://doi.org/10.3390/ijms25052621

J. Izquierdo-Pujol, M. C. Puertas, J. Martinez-Picado, and S. Morón-López, "Targeting Viral Transcription for HIV Cure Strategies," Microorganisms, vol. 12, no. 4, p. 752, Apr. 2024, doi: 10.3390/microorganisms12040752. DOI: https://doi.org/10.3390/microorganisms12040752

J. Hong et al., "Nanosome-mediated delivery of HDAC inhibitors and oxygen molecules for the transcriptional reactivation of latent HIV-infected CD4+ T Cells," Small, vol. 19, no. 37, p. 2301730, Apr. 2023, doi: 10.1002/smll.202301730. DOI: https://doi.org/10.1002/smll.202301730

I. Moranguinho and S. T. Valente, "Block-and-lock: New horizons for a cure for HIV-1," Viruses, vol. 12, no. 12, p. 1443, 2020, doi: 10.3390/v12121443. DOI: https://doi.org/10.3390/v12121443

E. Abner and A. Jordan, "HIV "shock and kill" therapy: In need of revision," Antiviral Research, vol. 166, pp. 19-34, Jun. 2019, doi: 10.1016/j.antiviral.2019.03.008. DOI: https://doi.org/10.1016/j.antiviral.2019.03.008

Y. Kim, J. L. Anderson, and S. R. Lewin, "Getting the "kill" into "shock and kill": Strategies to eliminate latent HIV," Cell Host & Microbe, vol. 23, no. 1, pp. 14-26, Jan. 2018, doi: 10.1016/j.chom.2017.12.004. DOI: https://doi.org/10.1016/j.chom.2017.12.004

C. Li, L. Mori, and S. T. Valente, "The block-and-lock strategy for human immunodeficiency virus cure: Lessons learned from didehydro-cortistatin A," (in eng), The Journal of Infectious Diseases, vol. 223, no. 12 Suppl 2, pp. 46-53, Feb. 2021, doi: 10.1093/infdis/jiaa681. DOI: https://doi.org/10.1093/infdis/jiaa681

A. Shmakova et al., "Chronic HIV-1 Tat action induces HLA-DR downregulation in B cells: A mechanism for lymphoma immune escape in people living with HIV," Journal of Medical Virology, vol. 96, no. 2, p. e29423, Jan. 2024, doi: 10.1002/jmv.29423. DOI: https://doi.org/10.1002/jmv.29423

K. N. U. Galpayage Dona, M. M. Benmassaoud, C. D. Gipson, J. P. McLaughlin, S. H. Ramirez, and A. M. Andrews, "Something to talk about; crosstalk disruption at the neurovascular unit during HIV infection of the CNS," NeuroImmune Pharmacology and Therapeutics, vol. 3, no. 2, pp. 97-111, Jul. 2024, doi: 10.1515/nipt-2024-0003. DOI: https://doi.org/10.1515/nipt-2024-0003

T. Huang et al., "Ponatinib represses latent HIV-1 by inhibiting AKT-mTOR," Antimicrobial Agents and Chemotherapy, vol. 67, no. 6, p. e0006723, Jun. 2023, doi: 10.1128/aac.00067-23. DOI: https://doi.org/10.1128/aac.00067-23

J. P. Nkolola and D. H. Barouch, "Prophylactic HIV-1 vaccine trials: past, present, and future," The Lancet HIV, vol. 11, no. 2, pp. e117-e124, Feb. 2024, doi: 10.1016/S2352-3018(23)00264-3. DOI: https://doi.org/10.1016/S2352-3018(23)00264-3

T. Ng'uni, C. Chasara, and Z. M. Ndhlovu, "Major scientific hurdles in HIV vaccine development: Historical perspective and future directions," Frontiers in Immunology, vol. 11, p. 590780, Oct. 2020, doi: 10.3389/fimmu.2020.590780. DOI: https://doi.org/10.3389/fimmu.2020.590780

E. Choi et al., "First Phase I human clinical trial of a killed whole-HIV-1 vaccine: demonstration of its safety and enhancement of anti-HIV antibody responses," Retrovirology, vol. 13, no. 1, p. 82, Nov. 2016, doi: 10.1186/s12977-016-0317-2. DOI: https://doi.org/10.1186/s12977-016-0317-2

H. J. Prudden et al., "Perspectives on design approaches for HIV prevention efficacy trials," AIDS Research and Human Retroviruses, Online ahead of print, Sep. 2023, doi: 10.1089/aid.2022.0150. DOI: https://doi.org/10.1089/aid.2022.0150

The Lancet HIV, "What future for HIV vaccines?," The Lancet HIV, vol. 10, no. 3, p. e143, Mar. 2023, doi: 10.1016/S2352-3018(23)00030-9. DOI: https://doi.org/10.1016/S2352-3018(23)00030-9

PrEPVacc, "News Release: Experimental HIV vaccine regimens likely to be ineffective in preventing HIV acquisition, PrEPVacc study reports," Dec. 4, 2023. [Online]. Available: https://www.prepvacc.org/news/experimental-hiv-vaccine-regimens-likely-to-be-ineffective-6-dec-2023-news-release

S. A. Migueles et al., "HIV vaccines induce CD8(+) T cells with low antigen receptor sensitivity," Science, vol. 382, no. 6676, pp. 1270-1276, Dec. 2023, doi: 10.1126/science.adg0514. DOI: https://doi.org/10.1126/science.adg0514

E. Rujas et al., "Liposome-based peptide vaccines to elicit immune responses against the membrane active domains of the HIV-1 Env glycoprotein," Biochimica et Biophysica acta Biomembranes, vol. 1866, no. 1, p. 184235, Jan. 2024, doi: 10.1016/j.bbamem.2023.184235. DOI: https://doi.org/10.1016/j.bbamem.2023.184235

K. O. Saunders et al., "Vaccine induction of CD4-mimicking HIV-1 broadly neutralizing antibody precursors in macaques," Cell, vol. 187, no. 1, pp. 79-94.e24, Jan. 2024, doi: 10.1016/j.cell.2023.12.002. DOI: https://doi.org/10.1016/j.cell.2023.12.002

P. Lusso, "The quest for an HIV-1 vaccine: will mRNA deliver us from evil?," Expert Review of Vaccines, vol. 22, no. 1, pp. 267-269, Mar. 2023, doi: 10.1080/14760584.2023.2184803. DOI: https://doi.org/10.1080/14760584.2023.2184803

M. Libera et al., "The Question of HIV Vaccine: Why Is a Solution Not Yet Available?," Journal of Immunology Research, vol. 2024, no. 1, p. 2147912, Apr. 2024, doi: 10.1155/2024/2147912. DOI: https://doi.org/10.1155/2024/2147912

R. C. Desrosiers, "The Failure of AIDS Vaccine Efficacy Trials: Where to Go from Here," Journal of Virology, vol. 97, no. 3, p. e0021123, Mar. 2023, doi: 10.1128/jvi.00211-23. DOI: https://doi.org/10.1128/jvi.00211-23

B. F. Haynes et al., "Strategies for HIV-1 vaccines that induce broadly neutralizing antibodies," Nature Reviews Immunology, vol. 23, no. 3, pp. 142-158, Mar. 2023, doi: 10.1038/s41577-022-00753-w. DOI: https://doi.org/10.1038/s41577-022-00753-w

J. J. Thavarajah, B. L. Hønge, and C. M. Wejse, "The Use of Broadly Neutralizing Antibodies (bNAbs) in HIV-1 Treatment and Prevention," Viruses, vol. 16, no. 6, p. 911, Jun. 2024, doi: 10.3390/v16060911. DOI: https://doi.org/10.3390/v16060911

G. S. Frattari, M. Caskey, and O. S. Søgaard, "Broadly neutralizing antibodies for HIV treatment and cure approaches," Current Opinion in HIV and AIDS, vol. 18, no. 4, pp. 157-163, Jul. 2023, doi: 10.1097/COH.0000000000000802. DOI: https://doi.org/10.1097/COH.0000000000000802

B. Julg et al., "Safety and antiviral effect of a triple combination of HIV-1 broadly neutralizing antibodies: a phase 1/2a trial," Nature Medicine, vol. 30, no. 12, pp. 3534-3543, Dec. 2024, doi: 10.1038/s41591-024-03247-5. DOI: https://doi.org/10.1038/s41591-024-03247-5

International Council for Harmonisation of Good Clinical Practice. "A Study to Evaluate the Antiviral Effect, Safety and Tolerability of GSK3810109A in Viremic Human Immunodeficiency Virus (HIV)-1 Infected Adults." ichgcp.net. https://ichgcp.net/clinical-trials-registry/NCT04871113 (accessed Mar. 6, 2025).

C. Wong, "UK first to approve CRISPR treatment for diseases: what you need to know," Nature, vol. 623, pp. 676-677, Nov. 2023, doi: 10.1038/d41586-023-03590-6. DOI: https://doi.org/10.1038/d41586-023-03590-6

T. H. Burdo et al., "Preclinical safety and biodistribution of CRISPR targeting SIV in non-human primates," Gene Therapy, vol. 31, pp. 224-233, Aug. 2023, doi: 10.1038/s41434-023-00410-4. DOI: https://doi.org/10.1038/s41434-023-00410-4

A. M. Joseph, M. Karas, Y. Ramadan, E. Joubran, and R. J. Jacobs, "Ethical perspectives of therapeutic human genome editing from multiple and diverse viewpoints: a scoping review," Cureus, vol. 14, no. 11, p. e31927, Nov. 2022, doi: 10.7759/cureus.31927. DOI: https://doi.org/10.7759/cureus.31927

R. F. D’Souza, M. Mathew, and K. M. Surapaneni, "A Scoping Review on the Ethical Issues in the Use of CRISPR-Cas9 in the Creation of Human Disease Models," Journal of Clinical and Diagnostic Research, vol. 17, no. 12, pp. JE01-JE08, Dec. 2023, doi: 10.7860/JCDR/2023/68275.18809. DOI: https://doi.org/10.7860/JCDR/2023/68275.18809

L. Joszt, "Financial Burdens of HIV Treatment and HCRU," American Journal of Managed Care, Oct. 16, 2024. [Online]. Available: https://www.ajmc.com/view/financial-burdens-of-hiv-treatment-and-hcru

A. Colson et al., "Health care resource utilization and costs for treatment-experienced people with HIV switching or restarting antiretroviral regimens since 2018," Journal of Managed Care & Specialty Pharmacy, vol. 30, no. 8, pp. 762-896, Aug. 2024, doi: 10.18553/jmcp.2024.30.8.817. DOI: https://doi.org/10.18553/jmcp.2024.30.8.817

M. Slot, T. B. Rasmussen, M. Nørgaard, C. S. Larsen, and L. H. Ehlers, "Evaluating Cost-Effectiveness of Antiretroviral Therapy over Time: A Cohort and Cost-Effectiveness Study," PharmacoEconomics - Open, vol. 8, pp. 847-856, Jul. 2024, doi: 10.1007/s41669-024-00513-7. DOI: https://doi.org/10.1007/s41669-024-00513-7

World Health Organisation. "Vaccines and immunization." who.int. https://www.who.int/health-topics/vaccines-and-immunization#tab=tab_1 (accessed Mar. 6, 2025).

World Health Organisation, "Global vaccine market report 2024," WHO, Geneva, B09198, Feb. 2025. [Online]. Available: https://www.who.int/publications/i/item/B09198

H. Jalilian, M. Amraei, E. Javanshir, K. Jamebozorgi, and F. Faraji-Khiavi, "Ethical considerations of the vaccine development process and vaccination: a scoping review," BMC Health Services Research, vol. 23, no. 1, p. 255, Mar. 2023, doi: 10.1186/s12913-023-09237-6. DOI: https://doi.org/10.1186/s12913-023-09237-6

G. Pancras, M. Ezekiel, E. Mbugi, and J. F. Merz, "Should HIV vaccines be made available at no or subsidized cost? A qualitative inquiry of HIV vaccine trial stakeholders in Tanzania," AJOB Empirical Bioethics, Online ahead of print, Oct. 2023, doi: 10.1080/23294515.2023.2274599. DOI: https://doi.org/10.1080/23294515.2023.2274599

C. Z.-Y. Abana, H. Lamptey, E. Y. Bonney, and G. B. Kyei, "HIV cure strategies: which ones are appropriate for Africa?," Cellular and Molecular Life Sciences, vol. 79, p. 400, Jul. 2022, doi: 10.1007/s00018-022-04421-z. DOI: https://doi.org/10.1007/s00018-022-04421-z

Downloads

Published

2025-04-05

How to Cite

[1]
S. J. Q. Oon and P. A. Knight, “The Possibilities of Finding a Cure for HIV: A Literature Review”, Adv. J. Grad. Res., vol. 16, no. 1, pp. 23–37, Apr. 2025.