Maize Response to Sole and Combined Effects of Nitrogen and Nematode Stresses

Authors

  • Joshua Benjamin Department of Crop Protection and Environmental Biology, Faculty of Agriculture, University of Ibadan https://orcid.org/0000-0002-1073-5647
  • Sifau Adenike Adejumo Department of Crop Protection and Environmental Biology, Faculty of Agriculture, University of Ibadan https://orcid.org/0000-0002-4718-7090
  • Abiodun Claudius-Cole Department of Crop Protection and Environmental Biology, Faculty of Agriculture, University of Ibadan https://orcid.org/0000-0003-1206-6325

DOI:

https://doi.org/10.21467/ajgr.9.1.71-80

Abstract

Crops grown on the field or in phytotrons are faced with different biotic stresses including plant-parasitic nematodes (PPNs) and abiotic stresses such as drought and poor soil fertility (low nitrogen levels). In this study, the interactive responses of a low-nitrogen tolerant variety LNTP-YC6 and a regular variety BR-9928-DMRSR to Pratylenchus zeae under four nitrogen-levels: no amendment; [T0], low nitrogen [100kgN/ha NPK; T1], optimum nitrogen [200kgN/ha NPK + Urea; T2] and compost [10t/ha; T3] were investigated. The treatments were arranged in a 2 x 4 factorial fitted into randomised complete block design (RCBD) with four replicates. Data were collected on growth parameters (plant height and stem girth), yield components (number and weight of cobs), lesion score (LS), final nematode population (FNP) and reproductive factor (RF). Low nutrient stress in combination with nematode infection generally reduced maize growth and yield. Growth parameters of BR-9928-DMRSR variety were generally high while yield parameters of LNTP-YC6 variety were significantly greater than in BR-9928-DMRSR variety. However, T2 and T3 improved growth and yield of both maize varieties compared to T0, with T2 being superior to T3. Meanwhile, T3 reduced FNP more than T2. FNP (107.65) and RF (1.3) of P. zeae on LNTP-YC6 variety and with T3 was significantly low compared to T2 (178, 3.34), T0 (188, 3.6) and T1 (217, 5.0). In all the parameters considered, LNTP-YC6 outperformed BR-9928-DMRSR variety. In conclusion, soil amendment with optimum rate of nitrogen and compost reduced nematode population and enhanced maize growth, while low nitrogen in combination with nematode stress reduced maize yield.

Keywords:

Abiotic stress, Low-N tolerance, Pratylenchus zeae

Downloads

Download data is not yet available.

References

J. Strable and M. J. Scanlon, “Maize (Zeae mays L.): A Model Organism for Basic and Applied Research in Plant Biology”, Department of Plant Biology, Cornell University, Ithaca, NY 14853, USA, 2010.

D. Kumar and A. N. Jhariya, “Nutritional, Medicinal and Economical importance of Corn: A Mini Review”. Research Journal of Pharmaceutical Science. ISSN 2319 – 555X Vol. 2(7), 7-8, 2013.

F. Hossain, V. Muthusamy, J. S. Bhat, S. K. Jha, R. Zunjare, A. Das, K. Sarika and R. Kumar, “Maize. In: M. Singh, S. Kumar (eds.), Broadening the Genetic Base of Grain Cereals”. Springer India, 67-69, 2016.

FAOSTAT (2016) http://faostat.fao.org

A. H. McDonald and J. M. Nicol, “Nematode Parasites of Cereals. In: Luc, M., Sikora, R. A. and Bridge, J. (Eds). Plant parasitic nematodes in subtropical and tropical agriculture”, 2nd edition. Wallingford, UK, CABI Publishing, pp. 131-191, 2005.

M. C. Olajide and N. B. Iziogu, “Bio-control of root-knot nematode (Meloidogyne incognita) using Trichoderma harzianum on Tomato (Lycopersicon esculentum L. Mill)”. Journal of Biology, Agriculture and Healthcare. Vol. 5, No. 19, 2015. ISSN 2224-3208.

D. L Coyne, L. Cortada, J. J. Dalzell, A. O. Claudius-Cole et al., “Plant-parasitic nematodes and Food Security in Sub-Saharan Africa”. Annual Review of Phytopathology. 56:18.1-18.23, 2018. https://doi.org/10.1146/annurev-phyto-080417-045833

Z. A. Handoo, A. M. Skantar, L. K. Carta and E. F. Erbe, “Morphological and molecular characterization of a new root-knot nematode, Meloidogyne thailandica (Nematoda: Meloidogynidae), parasitizing ginger (Zingiber sp.)”. Journal of Nematology 37, 343–353, 2005.

L. D. Bruyn, J. Schiers, R. Verhagen, “Nutrient stress, host plant quality and herbivore performance of a leaf-mining fly on grass”. Oecologia 130:594-599, 2002. doi 10.1007/s00442-001-0840-1.

R. O. Onasanya, O. P. Aiyelari, A. S. Onasanya, F. E. Oikeh and O.O. Oyelakin, “Growth and Yield Response of Maize (Zeae mays L.) to Different Rates of Nitrogen and Phosphorus Fertilizers in Southern Nigeria”. IDOSI Publications. 5(4): 400-407, 2009.

M. Pessarakli, M. Haghighi and A. Sheibanirad, “Plant responses under environmental stress conditions”. Advanced Plants Agricultural Research, 2 (6):276‒286, 2015.

Y. Wu and W. Liu, “Low-nitrogen stress tolerance and nitrogen agronomic efficiency among maize inbreds: Comparison of multiple indices and evaluation of genetic variation”. Euphytica 180: 281-290, 2011. doi 10.1007/s10681-011-0409-y.

A. Sapkota, R. K. Shrestha and D. Chalise, “Response of Maize to the Soil Application of Nitrogen and Phosphorous Fertilizers”. International Journal of Applied Science Biotechnology, Vol. 5(4): 537-541, 2017.

S.A. Adejumo and Togun A.O. (2014). Compost amendment enhanced nutrient uptake and dry matter accumulation in heavy metal stressed maize crop. Nigeria Agricultural Journal, 45 (1):65-79.

N. J. Atkinson and P. E Urwin, “The interaction of plant biotic and abiotic stresses: from genes to the field”. Journal of Experimental Botany, Vol. 63, No. 10, pp. 3523-3544, 2012. doi:10.1093/jxb/ers100.

I. B. Rejeb, V. Pastor and B. Mauch-Mani, “Plant Responses to Simultaneous Biotic and Abiotic Stress: Molecular Mechanisms”, Plants, 3, 458-475, 2014.

H. B. Shao, L.Y. Chu, C. A. Jaleel and C. X. Zhao, “Water-deficit stress—induced anatomical changes in higher plants”. C. R. Biology, 331, 215–225, 2008.

N. Suzuki, R. M. Rivero, V. Shulaev, E. Blumwald and R. Mittler, “Abiotic and biotic stress combinations”. New Phytologist, 203(1), 32-43, 2014.

H. F. Tippmann., U. S. Schluter and D. B. Collinge, “Common themes in biotic and abiotic stress signaling in plants, floriculture, ornamental and plant biotechnology. In: Teixeira da Silva J. A, editor. Floriculture, ornamental and plant biotechnology”. Global Science Books, Advances and topical issues, Vol. 3. Ikenobe, 52–67, 2006.

V. Ramegowda and K. M. Senthil, “The interactive effects of simultaneous biotic and abiotic stresses on plants: Mechanistic understanding from drought and pathogen combination”. Journal of Plant Physiology 176: 47-54, 2015.

X. Sun, X. Zhang, S. Zhang, G. Dai, S. Han, W. Liang. Soil nematode responses to increases in nitrogen deposition and precipitation in a temperate forest. PLoS One 12, 2013. e82468.

M. Song, S. Jing, Y. Zhou, Y. Hui, F. Wang, D. Hui, L. Jiang, S. Wan. Dynamics of soil nematode communities in wheat fields under different nitrogen management in Northern China Plain. European Journal of Soil Biology, 71 (2015), pp. 13-20. https://doi.org/10.1016/j.ejsobi.2015.09.002

H. H. Puerari, C. R. Dias-Arieira, M. R. Cardoso et al. Resistance inducers in the control of root lesion nematodes in resistant and susceptible cultivars of maize. Phytoparasitica 43, 383–389 (2015). https://doi.org/10.1007/s12600-014-0447-9

D. L. Coyne, J. M. Nicol and B. Claudius-Cole, “Practical plant nematology: a field and laboratory guide”. 2nd edition. SP-IPM Secretariat, International Institute of Tropical Agriculture (IITA), Cotonou, Benin, pp 82. 2007. ISBN 978-978-8444-40-4

A. S. Paiko, T. Ahmadu, O. Rasheed, K. Ahmad, K. Sijam and W. Alsultan, “Disease prevalence and severity assessment of Pratylenchus zeae coffeae on an infected banana in Peninsular Malaysia”. Plant Pathology and Quarantine 9(1): 6–22 (2019) ISSN 2229-2217, 2019. doi 10.5943/ppq/9/1/2.

A. O. Togun and W. B Akanbi, “Comparative Effectiveness of Organic-Based Fertilizer to Mineral Fertilizer on Tomato Growth and Fruit Yield, Compost Science and Utilization”, 11:4, 337-342, 2003. doi: 10.1080/1065657X.2003.10702143

S. B. Orisajo and K. B. Adejobi, “Fertilizer application enhances establishment of cacao seedlings in plant-parasitic nematodes infected soil”. Acta agriculturae Slovenica, 115/2, 417–428, 2020. doi:10.14720/aas.2020.115.2.1136.

J. Hu, G. R. Chen, W. M. Hassan, H. Chen, J. Y. Li and G. Z. Du, “Fertilization influences the nematode community through changing the plant community in the Tibetan Plateau”. European Journal of Soil Biology, 78, 7-16. 2017. https://doi.org/10.1016/j.ejsobi.2016.11.001

J. T. Jones, A. Haegeman, E. C. J. Danchin, H. S. Gaur, J. Helder, M. G. K. Jones, et al., “Top 10 plant-parasitic nematodes in molecular plant pathology”. Molecular Plant Pathology, 14, 946-961, 2013.

H. Gustavo, R. C. Ivan, N. Malcon et al. “Importance of nitrogen in maize production” International Journal of Current Research, 8, (08), 36629-36634, 2016.

M. Ozores-Hampton, “Organic materials in horticulture: An industry perspective”. Horticultural Technology, 12(3): 8-9, 2002.

F. O. Tobih, A. A. Adegbite, C. C. Ononuju, “Evaluation of some plant materials as organic mulch for the control of root-knot nematode (Meloidogyne spp.) and its impact on growth and yield of Celosia argentea L”. International Journal of Agricultural Science, 1(4): 591202, 2011.

Downloads

Published

2020-12-28

Issue

Section

Graduate Research Articles

How to Cite

[1]
J. Benjamin, S. A. Adejumo, and A. Claudius-Cole, “Maize Response to Sole and Combined Effects of Nitrogen and Nematode Stresses”, Adv. J. Grad. Res., vol. 9, no. 1, pp. 71–80, Dec. 2020.