Fabrication Method of Carbon-based Materials in CH4/N2 Plasma by RF-PECVD and Annealing Treatment for Laser Diodes





The present research addresses the synthesis of carbon materials thin films by RF-PECVD in N2/CH4 gas mixture. Carbon materials film was formed at 40/48 sccm of CH4/N2 of the total gas flow rate ratio CH4/CH4+N2 = 0.45 and 200/100 W HF/LF power at a deposition temperature of 350 oC and 1000 mTorr pressure. Then, post-annealing of carbon materials film took place at 400 oC by means of RTA under N2 flow. The formation of carbon nanostructures was investigated by scanning electron microscopy, energy dispersive X-ray, Raman spectroscopy, and atomic force microscopy, respectively. AFM shows that the films consisted of nanocrystalline grains. The surface morphology and structural characteristics of materials were studied as a gas flow function and substrate temperature. EDX results indicated the carbon presence, and Raman spectroscopy analysis revealed two broad bands: D-band 1381.64 cm1 and G-band 1589.42 cm1. The temperature-dependent post-annealing of carbon materials plays a key role in the graphite crystallites growth at high substrate temperatures. Our results indicate carbon materials incorporation for laser diode applications.


Carbon materials, Transparent conducting oxide of tin-doped In2O3, Wide bandgap semiconductor


Download data is not yet available.


S. N. Grigoriev, M. A. Volosova, S. V. Fedorov, and M. Mosyanov, “Influence of DLC Coatings Deposited by PECVD Technology on the Wear Resistance of Carbide End Mills and Surface Roughness of AlCuMg2 and 41Cr4 Workpieces,” Coatings, vol. 10, no. 11, p. 1038, Oct. 2020.

Y. Tanaka, K. Miyake, and A. Saito, “Diamond-like carbon film for bearing parts and its mass production technology,” SEI Technical Review, no. 88, 2019.

C. Casiraghi, J. Robertson, and A. C. Ferrari, “Diamond-like carbon for data and beer storage,” Materials Today, vol. 10, no. 1–2. 2007. doi: 10.1016/S1369-7021(06)71791-6.

J. Robertson, “Diamond-like amorphous carbon,” Materials Science and Engineering: R: Reports, vol. 37, no. 4–6, pp. 129–281, May 2002.

J. Y. Tsao et al., “Ultrawide-Bandgap Semiconductors: Research Opportunities and Challenges,” Advanced Electronic Materials, vol. 4, no. 1. 2018. doi: 10.1002/aelm.201600501.

C. J. H. Wort and R. S. Balmer, “Diamond as an electronic material,” Materials Today, vol. 11, no. 1–2. 2008. doi: 10.1016/S1369-7021(07)70349-8.

Z. Zheng, “Diamond-Like Carbon Films Made by Sputtering and PECVD,” 1997.

A. S. Tremsin and O. H. W. Siegmund, “UV photoemission efficiency of polycrystalline CVD diamond films,” Diam Relat Mater, vol. 14, no. 1, 2005, doi: 10.1016/j.diamond.2004.06.039.

L. J. Meng, E. Liang, J. Gao, V. Teixeira, and M. P. D. Santos, “Study of indium tin oxide thin films deposited on acrylics substrates by ion beam assisted deposition technique,” in Journal of Nanoscience and Nanotechnology, 2009. doi: 10.1166/jnn.2009.M24.

A. Myzaferi et al., “Transparent conducting oxide clad limited area epitaxy semipolar III-nitride laser diodes,” Appl Phys Lett, vol. 109, no. 6, 2016, doi: 10.1063/1.4960791.

A. Myzaferi, A. H. Reading, R. M. Farrell, D. A. Cohen, S. Nakamura, and S. P. DenBaars, “Semipolar III-nitride laser diodes with zinc oxide cladding,” Opt Express, vol. 25, no. 15, 2017, doi: 10.1364/oe.25.016922.

S. Mehari, D. A. Cohen, D. L. Becerra, S. Nakamura, and S. P. DenBaars, “Demonstration of enhanced continuous-wave operation of blue laser diodes on a semipolar 202¯1¯ GaN substrate using indium-tin-oxide/thin-p-GaN cladding layers,” Opt Express, vol. 26, no. 2, 2018, doi: 10.1364/oe.26.001564.

S. G. Lee et al., “Continuous-wave operation of nonpolar GaN-based vertical-cavity surface-emitting lasers,” 2018. doi: 10.1117/12.2314885.

J. H. Park, C. Buurma, S. Sivananthan, R. Kodama, W. Gao, and T. A. Gessert, “The effect of post-annealing on Indium Tin Oxide thin films by magnetron sputtering method,” Appl Surf Sci, vol. 307, 2014, doi: 10.1016/j.apsusc.2014.04.042.

K. S. Tseng and Y. L. Lo, “Effect of sputtering parameters on optical and electrical properties of ITO films on PET substrates,” Appl Surf Sci, vol. 285, no. PARTB, 2013, doi: 10.1016/j.apsusc.2013.08.024.

K. C. Heo, Y. Sohn, and J. S. Gwag, “Effects of an additional magnetic field in ITO thin film deposition by magnetron sputtering,” Ceram Int, vol. 41, no. 1, 2015, doi: 10.1016/j.ceramint.2014.08.111.

Y. S. Jung, D. W. Lee, and D. Y. Jeon, “Influence of dc magnetron sputtering parameters on surface morphology of indium tin oxide thin films,” Appl Surf Sci, vol. 221, no. 1–4, 2004, doi: 10.1016/S0169-4332(03)00862-6.

A. Klöppel et al., “Dependence of the electrical and optical behaviour of ITO-silver-ITO multilayers on the silver properties,” Thin Solid Films, vol. 365, no. 1, 2000, doi: 10.1016/S0040-6090(99)00949-9.

K. Y. Pan, L. Da Lin, L. W. Chang, and H. C. Shih, “Studies on the optoelectronic properties of the thermally evaporated tin-doped indium oxide nanostructures,” Appl Surf Sci, vol. 273, 2013, doi: 10.1016/j.apsusc.2012.12.149.

J. B. Choi, J. H. Kim, K. A. Jeon, and S. Y. Lee, “Properties of ITO films on glass fabricated by pulsed laser deposition,” in Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2003. doi: 10.1016/S0921-5107(02)00625-6.

J. M. Dekkers, G. Rijnders, and D. H. A. Blank, “Role of Sn doping in In2O3 thin films on polymer substrates by pulsed-laser deposition at room temperature,” Appl Phys Lett, vol. 88, no. 15, 2006, doi: 10.1063/1.2195096.

Y. C. Park, Y. S. Kim, H. K. Seo, S. G. Ansari, and H. S. Shin, “ITO thin films deposited at different oxygen flow rates on Si(100) using the PEMOCVD method,” Surf Coat Technol, vol. 161, no. 1, 2002, doi: 10.1016/S0257-8972(02)00476-0.

Y. S. Kim, Y. C. Park, S. G. Ansari, B. S. Lee, and H. S. Shin, “Effect of substrate temperature on the bonded states of indium tin oxide thin films deposited by plasma enhanced chemical vapor deposition,” Thin Solid Films, vol. 426, no. 1–2, 2003, doi: 10.1016/S0040-6090(03)00005-1.

K. L. Chopra, S. Major, and D. K. Pandya, “Transparent conductors-A status review,” Thin Solid Films, vol. 102, no. 1. 1983. doi: 10.1016/0040-6090(83)90256-0.

J. H. Choi et al., “Nearly single-crystalline GaN light-emitting diodes on amorphous glass substrates,” Nat Photonics, vol. 5, no. 12, 2011, doi: 10.1038/nphoton.2011.253.

J. H. Choi et al., “Fully flexible gan light-emitting diodes through nanovoid-mediated transfer,” Adv Opt Mater, vol. 2, no. 3, 2014, doi: 10.1002/adom.201300435.

Photron Pty. Ltd., “Deuterium Lamps. Photron Pty. Ltd.,” Mar. 04, 2016. https://web.archive.org/web/20160304025924/http://www.photron.com.au/.assets/brochures/deuterium_lamp.pdf (accessed Sep. 18, 2023).

K. Meguro, K. Tanizaki, Y. Yamamoto, and T. Imai, “Diamond substrate and its manufacturing method,” JP2006273592A, Mar. 28, 2005

S. C. Eaton, A. B. Anderson, J. C. Angus, Y. E. Evstefeeva, and Y. V. Pleskov, “Co-doping of diamond with boron and sulfur,” Electrochemical and Solid-State Letters, vol. 5, no. 8, 2002, doi: 10.1149/1.1486821.

W. Haenni, P. Rychen, M. Fryda, and C. Comninellis, “Chapter 5 Industrial applications of diamond electrodes,” Semiconductors and Semimetals, vol. 77, no. C, pp. 149–196, Jan. 2004, doi: 10.1016/S0080-8784(04)80017-6.

E. Nam, Y. H. Kang, D. J. Son, D. Jung, S. J. Hong, and Y. S. Kim, “Electrical and surface properties of indium tin oxide (ITO) films by pulsed DC magnetron sputtering for organic light emitting diode as anode material,” Surf Coat Technol, vol. 205, no. SUPPL. 1, 2010, doi: 10.1016/j.surfcoat.2010.06.060.

K. Mondal, J. Kumar, and A. Sharma, “ TiO 2 -nanoparticles-impregnated photocatalytic macroporous carbon films by spin coating ,” Nanomaterials and Energy, vol. 2, no. 3, 2013, doi: 10.1680/nme.12.00034.

Z. Iqbal and S. Veprek, “Raman scattering from hydrogenated microcrystalline and amorphous silicon,” Journal of Physics C: Solid State Physics, vol. 15, no. 2, 1982, doi: 10.1088/0022-3719/15/2/019.

E. Anastassakis, A. Pinczuk, E. Burstein, F. H. Pollak, and M. Cardona, “Effect of static uniaxial stress on the Raman spectrum of silicon,” Solid State Commun, vol. 8, no. 2, 1970, doi: 10.1016/0038-1098(70)90588-0.

M. Becker, H. Scheel, S. Christiansen, and H. P. Strunk, “Grain orientation, texture, and internal stress optically evaluated by micro-Raman spectroscopy,” J Appl Phys, vol. 101, no. 6, 2007, doi: 10.1063/1.2434961.

M. De Biasio et al., “Determination of stress in silicon wafers using Raman spectroscopy,” in Next-Generation Spectroscopic Technologies VIII, 2015. doi: 10.1117/12.2176994.

“TM002-02-A Introduction to WiRE and System start-up,” Cornell Center for Materials Research, Aug. 2016. https://www.ccmr.cornell.edu/wp-content/uploads/sites/2/2016/08/Wire4_Training_Modules_Compilation-Part-2.pdf (accessed Sep. 15, 2023).

K. J. Cho et al., “Fabrication and characteristics of amorphous carbon films grown in pure methane plasma by using radio frequency plasma enhanced chemical vapor deposition,” Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, vol. 42, no. 4 A, 2003, doi: 10.1143/jjap.42.1744.

D. Raoufi, A. Kiasatpour, H. R. Fallah, and A. S. H. Rozatian, “Surface characterization and microstructure of ITO thin films at different annealing temperatures,” Appl Surf Sci, vol. 253, no. 23, 2007, doi: 10.1016/j.apsusc.2007.05.032.

D. Raoufi, “Morphological characterization of ITO thin films surfaces,” Appl Surf Sci, vol. 255, no. 6, 2009, doi: 10.1016/j.apsusc.2008.10.020.

R. X. Wang, C. D. Beling, S. Fung, A. B. Djurišic, C. C. Ling, and S. Li, “Influence of gaseous annealing environment on the properties of indium-tin-oxide thin films,” J Appl Phys, vol. 97, no. 3, 2005, doi: 10.1063/1.1834984.

R. X. Wang et al., “Influence of annealing temperature and environment on the properties of indium tin oxide thin films,” J Phys D Appl Phys, vol. 38, no. 12, 2005, doi: 10.1088/0022-3727/38/12/022.

H. L. Ma, D. H. Zhang, P. Ma, S. Z. Win, and S. Y. Li, “Preparation and properties of transparent conducting indium tin oxide films deposited by reactive evaporation,” Thin Solid Films, vol. 263, no. 1, 1995, doi: 10.1016/0040-6090(95)06554-7.

S. H. Brewer and S. Franzen, “Calculation of the electronic and optical properties of indium tin oxide by density functional theory,” Chem Phys, vol. 300, no. 1–3, 2004, doi: 10.1016/j.chemphys.2003.11.039.

R. Balasundaraprabhu, E. V. Monakhov, N. Muthukumarasamy, O. Nilsen, and B. G. Svensson, “Effect of heat treatment on ITO film properties and ITO/p-Si interface,” Mater Chem Phys, vol. 114, no. 1, 2009, doi: 10.1016/j.matchemphys.2008.09.053.

Bridge Technology, “Ecopia low cost Hall effect measurement system for van der pauw method,” Bridge Technology.

L. H. W. Van Beveren et al., “Indium tin oxide film characterization using the classical Hall Effect,” in 2014 Conference on Optoelectronic and Microelectronic Materials and Devices, COMMAD 2014, 2014. doi: 10.1109/COMMAD.2014.7038675.

O. Adnan, “Electroluminescence of white light from ZnO nanostructures/TPD hybrid,” University of Baghdad, Karrada, 2015.

S. Vaziri, “Fabrication and Characterization of Graphene Field Effect Transistors,” Thesis, 2011.

A. S. Abbas, “Ultrawide-bandgap semiconductor of carbon-based materials for meta-photonics-heterostructure, lasers, and holographic displays,” AAPPS Bulletin, vol. 33, no. 1, 2023, doi: 10.1007/s43673-022-00073-0.

A. Oyekunle, “Diamond Keeps Growing as a WBG Material for High-power and Frequency Electronics,” All About Circuits, Mar. 09, 2022.




How to Cite

A. S. Abbas, “Fabrication Method of Carbon-based Materials in CH4/N2 Plasma by RF-PECVD and Annealing Treatment for Laser Diodes”, Adv. Nan. Res., vol. 6, no. 1, pp. 29–43, Sep. 2023.