Magnetic Nanorings for Biomedical Applications


  • Fernando Rodrigues Department of Physics,State University of Maringa image/svg+xml
  • Eduardo Azzolini Volnistem Department of Physics,State University of Maringa ,State University of Maringa image/svg+xml
  • Gustavo Sanguino Dias Department of Physics,State University of Maringa ,State University of Maringa image/svg+xml
  • Ivair Aparecido dos Santos Department of Physics,State University of Maringa ,State University of Maringa image/svg+xml
  • Luiz Cotica State Univeristy of Maringá



In this work we investigate the characteristics and feasibility of a new class of magnetic particles that are optimized for possible biological applications as magnetic hyperthermia. These new nanostructures have the nanoring shape, being composed of iron oxides (magnetite or hematite). Such morphology gives the nanoparticles a peculiar magnetic behavior due to their magnetic vortex state. The iron oxide nanorings were obtained using hydrothermal synthesis. X-ray Diffraction confirmed the existence of the desired crystal structure and Scanning Electron Microscopy shows that the magnetite particles had nanometric dimensions with annular morphology (diameter ~250 nm). The nanorings also show intensified magnetic properties and a transition to a vortex state. This study showed that it is possible to obtain magnetic nanorings with properties that can be used in nanotechnological applications (mainly biotechnological ones aimed at the treatment and diagnosis of cancer), in large quantities in a simple synthesis route.


magnetic nanorings, hydrothermal synthesis, magnetite


Download data is not yet available.


F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and A. Jemal, “Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries,” CA: A Cancer Journal for Clinicians, vol. 68, no. 6. Wiley, pp. 394–424, Sep. 12, 2018. doi: 10.3322/caac.21492.

W. Lin, “Introduction: Nanoparticles in Medicine,” Chemical Reviews, vol. 115, no. 19. American Chemical Society (ACS), pp. 10407–10409, Oct. 14, 2015. doi: 10.1021/acs.chemrev.5b00534.

G. R. Rudramurthy and M. K. Swamy, “Potential applications of engineered nanoparticles in medicine and biology: an update,” JBIC Journal of Biological Inorganic Chemistry, vol. 23, no. 8. Springer Science and Business Media LLC, pp. 1185–1204, Aug. 10, 2018. doi: 10.1007/s00775-018-1600-6.

Z. Ma, J. Mohapatra, K. Wei, J. P. Liu, and S. Sun, “Magnetic nanoparticles: Synthesis, anisotropy, and applications,” Chem. Rev., no. acs.chemrev.1c00860, 2021. doi: 10.1021/acs.chemrev.1c00860

A. Ali et al., “Review on recent progress in magnetic nanoparticles: Synthesis, characterization, and diverse applications,” Front. Chem., vol. 9, p. 629054, 2021. doi: 10.3389/fchem.2021.629054

C.-J. Jia et al., “Large-Scale Synthesis of Single-Crystalline Iron Oxide Magnetic Nanorings,” Journal of the American Chemical Society, vol. 130, no. 50. American Chemical Society (ACS), pp. 16968–16977, Nov. 19, 2008. doi: 10.1021/ja805152t.

E. Saavedra, A. Riveros, and J. L. Palma, “Effect of nonuniform perpendicular anisotropy in ferromagnetic resonance spectra in magnetic nanorings,” Sci. Rep., vol. 11, no. 1, p. 14230, 2021. doi: 10.1038/s41598-021-93597-8

J. Guo et al., “Recent advances in magnetic carbon nanotubes: synthesis, challenges and highlighted applications,” J. Mater. Chem. B Mater. Biol. Med., vol. 9, no. 44, pp. 9076–9099, 2021. doi: 10.1039/D1TB01242H

C. S. B. Dias et al., “Shape Tailored Magnetic Nanorings for Intracellular Hyperthermia Cancer Therapy,” Scientific Reports, vol. 7, no. 1. Springer Science and Business Media LLC, Nov. 01, 2017. doi: 10.1038/s41598-017-14633-0.

H. Gavilán et al., “Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer,” Chem. Soc. Rev., vol. 50, no. 20, pp. 11614–11667, 2021. doi: 10.1039/D1CS00427A

K. Riehemann, S. W. Schneider, T. A. Luger, B. Godin, M. Ferrari, and H. Fuchs, “Nanomedicine-Challenge and Perspectives,” Angewandte Chemie International Edition, vol. 48, no. 5. Wiley, pp. 872–897, Jan. 19, 2009. doi: 10.1002/anie.200802585.

X. Liu et al., “Magnetic nanomaterials-mediated cancer diagnosis and therapy,” Prog. Biomed. Eng., vol. 4, no. 1, p. 012005, 2022. doi: 10.1088/2516-1091/ac3111

C.-J. Jia et al., “Single-Crystalline Iron Oxide Nanotubes,” Angewandte Chemie International Edition, vol. 44, no. 28. Wiley, pp. 4328–4333, Jul. 11, 2005. doi: 10.1002/anie.200463038.

X. Hu, J. C. Yu, J. Gong, Q. Li, and G. Li, “α-Fe2O3 Nanorings Prepared by a Microwave-Assisted Hydrothermal Process and Their Sensing Properties,” Advanced Materials, vol. 19, no. 17. Wiley, pp. 2324–2329, Sep. 03, 2007. doi: 10.1002/adma.200602176.

S. Feng and R. Xu, “New Materials in Hydrothermal Synthesis,” Accounts of Chemical Research, vol. 34, no. 3. American Chemical Society (ACS), pp. 239–247, Dec. 20, 2000. doi: 10.1021/ar0000105.

B. L. Cushing, V. L. Kolesnichenko, and C. J. O’Connor, “Recent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles,” Chemical Reviews, vol. 104, no. 9. American Chemical Society (ACS), pp. 3893–3946, Aug. 20, 2004. doi: 10.1021/cr030027b.

Y. Xiao and J. Du, “Superparamagnetic nanoparticles for biomedical applications,” Journal of Materials Chemistry B, vol. 8, no. 3. Royal Society of Chemistry (RSC), pp. 354–367, 2020. doi: 10.1039/c9tb01955c.

Z. G. Guo, L. Q. Pan, H. M. Qiu, M. Y. Rafique, and S. Zeng, “Micromagnetic simulation of CoFe magnetic nanorings: Switching behavior in external magnetic field,” Adv. Mat. Res., vol. 710, pp. 80–84, 2013. doi: 10.4028/

T. Yang et al., “Manipulation of magnetization states of ferromagnetic nanorings by an applied azimuthal Oersted field,” Appl. Phys. Lett., vol. 98, no. 24, p. 242505, 2011. doi: 10.1063/1.3599714

C. S. B. Dias et al., “Shape tailored magnetic nanorings for intracellular hyperthermia cancer therapy,” Sci. Rep., vol. 7, no. 1, p. 14843, 2017. doi: 10.1038/s41598-017-14633-0

X.-L. Liu, Y. Yang, J.-P. Wu, Y.-F. Zhang, H.-M. Fan, and J. Ding, “Novel magnetic vortex nanorings/nanodiscs: Synthesis and theranostic applications,” Chin. Physics B, vol. 24, no. 12, p. 127505, 2015.

G. R. Lewis et al., “Magnetic vortex states in toroidal iron oxide nanoparticles: Combining micromagnetics with tomography,” Nano Lett., vol. 20, no. 10, pp. 7405–7412, 2020. doi: 10.1021/acs.nanolett.0c02795

M. J. Mitchell, M. M. Billingsley, R. M. Haley, M. E. Wechsler, N. A. Peppas, and R. Langer, “Engineering precision nanoparticles for drug delivery,” Nat. Rev. Drug Discov., vol. 20, no. 2, pp. 101–124, 2021. doi:10.1038/s41573-020-0090-8

X. Liu et al., “Graphene oxide-grafted magnetic nanorings mediated magnetothermodynamic therapy favoring reactive oxygen species-related immune response for enhanced antitumor efficacy,” ACS Nano, vol. 14, no. 2, pp. 1936–1950, 2020. doi: 10.1021/acsnano.9b08320






Research Articles

How to Cite

F. Rodrigues, E. Azzolini Volnistem, G. Sanguino Dias, I. Aparecido dos Santos, and L. Cotica, “Magnetic Nanorings for Biomedical Applications”, Adv. Nan. Res., vol. 5, no. 1, pp. 1–7, Jul. 2022.