Nanocomposite Obtained in the Plasma of a Pulsed High Voltage Discharge Using Nickel Electrodes and PTFE

Authors

  • Valerii Georgievich Kuryavyi Institute of Chemistry FEB RAS, Vladivostok, 690022, Russia
  • Grigorii Aleksandrovich Zverev Institute of Chemistry FEB RAS, Vladivostok, 690022, Russia
  • Ivan Anatol'evich Tkachenko Institute of Chemistry FEB RAS, Vladivostok, 690022, Russia
  • Arseny Borisovich Slobodyuk Institute of Chemistry FEB RAS, Vladivostok, 690022, Russia
  • Andrei Vladimirovich Gerasimenko Institute of Chemistry FEB RAS, Vladivostok, 690022, Russia
  • Aleksandr Yur'evich Ustinov Institute of Chemistry FEB RAS, Vladivostok, 690022, Russia
  • Vjacheslav Mihajlovich Bouznik All-Russian Research Institute of Aviation Materials, Moscow

DOI:

https://doi.org/10.21467/anr.4.1.10-26

Abstract

In the plasma of pulsed high-voltage discharge, initiated between nickel electrodes in air, when the fluoroplastic is placed in the discharge gap, powder nanocomposite material has been synthesized. The nanocomposite contains NiF2 nanoparticles less than 5 nm in size, dispersed in a matrix consisting of carbon and fluorocarbon substances. The carbonaceous substance contains nanoscale disordered graphite-like regions. The fluorocarbon component of the composite contains fragments of PTFE molecules and fluorocarbon molecular fragments that differ in structure from PTFE molecule’s structure. After annealing the composite in air at 773 K, the initial nanocomposite is transformed into a nanocomposite containing nanosized PTFE and nanoparticles of NiF2 less than 5 nm in size, scattered in a matrix composed of nanographite and low-layer nanosized graphene, after aneling at 1173 K into a material containing NiO nanoparticles less than 10 nm in size.  After annealing of the initial nanocomposite in argon atmosphere at 1073 K, the obtained nanocomposite contains Ni nanoparticles with sizes less than 5 nm and carbon and fluorocarbon components. The magnetic susceptibility of the unannealed nanocomposite is investigated. A transition to the antiferromagnetic phase at 73 K was detected. At T = 4K, exchange bias interaction of the AFM / FM type takes place in the composite. There is divergence of the FC and ZFC curves, which can be explained by the presence of a superparamagnetic phase or a spin glass phase in the sample. The field dependences of the magnetic susceptibility measured at T = 300 K show sharp changes that occur at certain values of the magnetic field. Elucidation of the nature of these changes requires additional research.

Keywords:

Nanocomposites NiF2 /C/CF/PTFE, Magnetic Susceptibility, Annealed

Downloads

Download data is not yet available.

References

T. Hassan, A. Salam, A. Khan, S. U. Khan, H. Khanzada, M. Wasim, M. Q. Khan, I. S. Kim, “Functional nanocomposites and their potential applications: A review”, Journal of Polymer Research, vol.28, no. 36, pp. 1-22, 2021. https://doi.org/10.1007/s10965-021-02408-1

R. A. M. Said, M. A. Hasan, A. M. Abdelzaher, A, M. Abdel-Raoof, “Review—Insights into the Developments of Nanocomposites for Its Processing and Application as Sensing Materials”, Journal of The Electrochemical Society, vol. 167, no.3, pp.1-8, J. Electrochem. Soc., 2020. https://doi.org/10.1149/1945-7111/ab697b

M. M. Shameem, S.M. Sasikanth, R. Annamalai et al., “A brief review on polymer nanocomposites and its applications”, Materials Today: Proceedings, vol. 45, pp. 2536-2539, 2021. https://doi.org/10.1016/j.matpr.2020.11.254

A. Ali, T. Shah, R. Ullah, P. Zhou, M. Guo, M. Ovais, Z. Tan, Y. Rui, “Review on Recent Progress in Magnetic Nanoparticles: Synthesis, Characterization, and Diverse Applications”, Frontiers in Chemistry, vol. 9, Front. Chem., 2021. https://doi.org/10.3389/fchem.2021.629054

H. Ullah, N. Batisse, K. Guerin, G. Rogez, P. Bonnet, “Synthesis of NiF2 and NiF2 .4H2O Nanoparticles by Microemulsion and Their Self-Assembly”, Langmuir, vol. 36, no. 29, pp.8461-8475, 2020. https://doi.org/10.1021/acs.langmuir.0c00889

N. Baig, I. Kammakakam, W. Falath, “Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges”, Materials Advances, vol. 2, iss. 6, pp. 1821-1871, Mater. Adv., 2021. https://doi.org/10.1039/D0MA00807A

S. Hongtao, D. Lederman, K. V. O’Donovan, J. A. Borchers, “Exchange bias and enhancement of the Neel temperature in thin NiF2 films”, Physical Review B, vol. 69, iss. 21, pp. 214416, 2004. https://doi.org/10.1103/PhysRevB.69.214416

D. Khomskii, Transition Metal Compounds, Cambridge University Press, ISBN 1107020174, 9781107020177, p. 496, 2015. https://doi.org/10.1557/mrs.2015.188

D.J. Lockwood, M.G. Cottam, “Magnetooptic coupling coefficients for one- and two-magnon Raman scattering in the rutile-structure antiferromagnets FeF2, MnF2, CoF2 and NiF2”, Low Temperature Physics/Fizika Nizkikh Temperatur, vol. 38, iss. 7, pp. 703–714, 2012. https://doi.org/10.1063/1.4733682

J. Khan, H. Ullah, M. Sajjad Co-, A. Bahadar, Z. Bhatti, F. Soomro, F. Hussain Memon, M. Iqbal, F. Rehman, K. Hussain Thebo, “High yield synthesis of transition metal fluorides (CoF2 , NiF2 , and NH4MnF3 ) nanoparticles with excellent electrochemical performance”, Inorganic Chemistry Communications, vol. 130, 2021. https://doi.org/10.1016/j.inoche.2021.108751

M. Helen, Maximilian Fichtner, M. Anji Reddy, “Electrochemical synthesis of carbon-metal fluoride nanocomposites as cathode materials for lithium batteries”, Electrochemistry Communications, vol. 120, pp. 106846, 2020. https://doi.org/10.1016/j.elecom.2020.106846

Q. Chang, Z. L., Licai Fu , J. Zhu, W. Yang, D. Li, L. Zhou, “A new cathode material of NiF2 for thermal batteries with high specific power”, Electrochimica Acta, vol. 361, pp. 137051, 2020. https://doi.org/10.1016/j.electacta.2020.137051 0013-4686

M. Hafiz, R. Abd-Shukor, “Effect of Nanosized NiF2 Addition on the Transport Critical Current Density of Ag-Sheathed (Bi1.6 Pb0.4)Sr2Ca2Cu3O10 Superconductor Tapes”, Advances in Materials Science and Engineering, ID 146476, pp.1-5, 2015. https://doi.org/10.1155/2015/146476

P. Sivaprakash, K. Ashok Kumar, S. Muthukumaran, A. Pandurangan, A. Dixit, S. Arumugam, “NiF2 as an efficient electrode material with high window potential of 1.8 V for high energy and power densityasymmetric supercapacitor”, Journal of Electroanalytical Chemistry, vol. 873, 114379, 2020. https://doi.org/10.1016/j.jelechem.2020.114379

V.G. Kuryavyi, I.A. Tkachenko, A.Yu. Ustinov, V.M. Bouznik, “The composite containing nanosized FeF3 and CrF3, aluminium compound, and carbon components synthesized in pulse high-voltage discharge plasma and its magnetic properties”, Sciences of Europe, vol. 4, no. 4, pp. 38-42, 2016.

V.G. Kuryavyi, V.M. Buznik, A.Yu. Ustinov, S.A. Sukhoverkhov, A.D. Pavlov, A.B. Slobodyuk, I.A. Tkachenko, A.A. Kvach, T.A. Kaidalova, “Nanocomposite Synthesized in Plasma of Pulse High-Voltage Discharge Initiated between Copper Electrodes in the Presence of Fluoroplast”, Inorganic Materials: Applied Research, vol. 10, no. 1, pp. 184-194, 2019. https://link.springer.com/article/10.1134/S2075113319010179

Y. Shi, M. Shen, S. Xu, X. Qiu, L. Jiang, Y. Qiang, Q. Zhuang, S. Sun, “Electrochemical Impedance Spectroscopic Study of the Electronic and Ionic Transport Properties of NiF2/C Composites”, Int. J. Electrochem. Sci., vol. 6, no. 8, pp. 3399-3415, 2011.

L. Doubtsof, P. Bonnet, L. Jouffret, K. Guérin, “The Influence of Sacrificial Carbonaceous Supports on the Synthesis of Anhydrous NiF2 Nanoparticles”, Chemistry Select, vol. 1, iss. 16, pp. 5172-5181, 2021. https://doi.org/10.1002/slct.201601306

V. Tripathi , H. Kumar , A. Agarwal, L. S. Panchakarla, J.Beilstein, “Microwave-induced electric discharges on metal particles for the synthesis of inorganic nanomaterials under solvent-free conditions”, Nanotechnology, vol. 11, pp. 1019–1025, 2020. https://doi.org/10.3762/bjnano.11.86

S. Uddin, L. B. Safdar, S. Anwar, J. Iqbal, S. Laila, B. A.n Abbasi, M. S. Saif, M. Ali, A. Rehman, A. Basit, Y. Wang, U. M. Quraishi, “Green Synthesis of Nickel Oxide Nanoparticles from Berberis balochistanica Stem for Investigating Bioactivities”, Molecules, vol. 26, iss. 6, 2021. https://doi.org/10.3390/molecules26061548

T. Merciris, F. Valensi, A. Hamdan, “Synthesis of nickel and cobalt oxide nanoparticles by pulsed underwater spark discharges”, Journal of Applied Physics, vol. 129, iss. 6, 063303, 2021. https://doi.org/10.1063/5.0040171

M. A. J. Kouhbanani, Y. Sadeghipour, M. Sarani, E. Sefidgar, S. Ilkhani, A. M. Amani, N. Beheshtkhoo, The inhibitory role of synthesized Nickel oxide nanoparticles against Hep-G2, MCF-7, and “HT-29 cell lines: the inhibitory role of NiO NPs against Hep-G2, MCF-7, and HT-29 cell lines”, Chemistry Letters And Reviews, vol. 14, no. 3, pp. 443-453, 2021. https://doi.org/10.1080/17518253.2021.1939435

N. Jaji, H. L. Lee, M. H. Hussin, H. M. Akil, M. R. Zakaria, M. B. H. Othman, “Advanced nickel nanoparticles technology: From synthesis to applications”, Nanotechnology Reviews, vol. 9, pp. 1456–1480, 2020. https://doi.org/10.1515/ntrev-2020-0109

AA. Adam, M. Szabados, G. Varga, A. Papp, K. Musza, Z. Konya, “Ultrasound-assisted hydrazine reduction method for the preparation of nickel nanoparticles, physicochemical characterization and catalytic application in Suzuki-Miyaura cross-coupling reaction”, Nanomaterials, vol. 10, iss. 4, pp. 632–649, 2020. https://doi.org/10.3390/nano10040632

L. Xiaohan , W. Gehui, “NiO@C and Ni@C Nanoparticles: Synthesis, Characterization and Magnetic Properties”, Nano Brief Reports and Reviews, vol. 15, no. 06, 2050072, 2020. https://doi.org/10.1142/S1793292020500721

Jianling Meng, Dongxia Shi, Guangyu Zhang, “A review of nanographene: growth and applications”, Modern Physics Letters B, Vol. 28, No. 20, 1430009, 2014. https://doi.org/10.1142/S0217984914300099

Lebedev, Yu.M Korolev, A.V. Rebrov, L.N. Ignat’eva, E.M. Antipov, “X-ray diffraction phase analysis of the crystalline phase of polytetrafluoroethylene”, Crystallography Reports, vol.55, no. 4, pp. 615-620, Crystallogr. Rep., 2010. https://doi.org/10.1134/S1063774510040139.

Z.Q. Li, C.J. Lu, Z.P. Xia, Y. Zhou, Z. Luo, “X-ray diffraction patterns of graphite and turbostratic carbon”, Carbon, vol. 45, no.8, pp. 1686-1695, 2007. https://doi.org/10.1016/j.carbon.2007.03.038

J.E. Wertz, J.R. Bolton. Electron Spin Resonance. Elementary Theory and Practical Applications. Springer Science+Business Media B.V., 500 p., 1986. https://www.springer.com/gp/book/9789401083072.

H. J. Bardeleben, J. L. Cantin, A. Zeinert, B. Racine, K. Zellama, P. N.Hai, “Spins and microstructure of hydrogenated amorphous carbon: A multiple frequency electron paramagnetic resonance study”, Applied Physics Letters, vol. 78, pp. 2843, Appl. Phys. Lett., 2001. https://doi.org/10.1063/1.1370980.

T.H. Dufour, N. Vandencasteele, S. Desbief, R. Lazzaroni, F.Reniers, “Etching Processes of Polytetrafluoroethylene Surfaces Exposed to He and He-O2 Atmospheric Post-discharges”, Langmuir, vol. 28, pp. 9466-9474, 2012. https://doi.org/10.1021/la300822j.

V.N. Mitkin, “Types of inorganic fluorocarbon polymer materials and structure–property correlation problems”, Journal of Structural Chemistry, vol. 44, pp. 82-115, J. Struct. Chem., 2003. https://doi.org/10.1023/A:1024989132154

V.M. Bouznik, V.M. Fomin, A.P. Alkhimov, L.N. Ign atieva, Metallopolimernye Nanokompozity (Polucheniye, Svoystva, Primeneniye), Izd-vo SO RAS, 260 p., 2005.

R. Setton, P. Bernier, S. Lefrant. Carbon molecules and materials. L.-N.Y.: Taylor @ Francis, 512 p., 2002.

K.Ikeda, Y.Kubo, K.Okamoto, “Elucidation of Molecular Structure and Adhesion State of Cross-Linked Fluororesin”, SEI Technical Review, vol. 196, pp. 42-57, 2020.

V.Wray, “F-19 NMR Spectroscopy”, Annual Reports NMR Spectroscopy, vol. 10B, no. 1, 1980.

O.A. Maslova, M.R. Ammar, G. Guimbretiere, J.-N. Rouzaud, P. Simon, “Determination of crystallite size in polished graphitized carbon by Raman spectroscopy”, Physical Review B, vol. 86, iss. 13, pp. 134205-5, 2012. https://doi.org/10.1103/PhysRevB.86.134205

F.Tuinstra, J.Koenig, “Raman spectrum of graphite”, Journal of Chemical Physics, vol. 53, iss. 3, pp. 1126-1130, J. Chem. Phys., 1970. https://doi.org/10.1063/1.1674108

C. D´ıaz, M. L. Valenzuela, M.A. Laguna-Bercero, A. Orera, D. Bobadilla, S. Abarcaa, O. Pena, “Synthesis and magnetic properties of nanostructured metallic Co, Mn and Ni oxide materials obtained from solid-state metalmacromolecular complex precursors”, RSA Advanced, iss. 44, pp. 27729-27736, 2017. https://doi.org/10.1039/c7ra00782e.

T. Makarova, F. Palacio, Carbon Based Magnetism: An Overview of the Magnetism of Metal Free Carbon-based, Compounds and Materials, pp. 576, 2006. https://www.elsevier.com/books/carbon-based-magnetism/makarova/978-0-444-51947-4.

G.A. Petrakovskii, “Spin glasses”, Sorosovskii obrazovatelnii Zhurnal, vol. 7, no. 9, pp. 83-89, 2001.

S.P. Gubin, Yu.A. Koksharov, G.B. Khomutov, G.Yu Yurkov, “Magnetic nanoparticles: preparation, structure and properties”, Russian Chemical Reviews, vol. 74, no. 6, pp. 489–520, Russ. Chem. Rev., 2005. https://doi.org/10.1070/RC2005v074n06ABEH000897.

V.I. Belokon, K.V .Nefedov, M.A.Savunov, “Finite interaction range spin glass in the Ising model”, Physics of the Solid State, vol. 48, iss. 9, pp.1746-1753, Phys. Solid State., 2006. https://doi.org/10.1134/S106378340609023X

I.J. Bruvera, M.P. Zélis, M.P. Calatayud, G. Goya, F. H.Sánchez, “Determination of the blocking temperature of magnetic nanoparticles: The good, the bad, and the ugly”, Journal of Applied Physics, vol. 118, iss. 18, pp. 184304-7, 2015. https://doi.org/10.1063/1.4935484

L .M. Matarrese, J.W. Stout, “Magnetic Anisotropy of NiF2”, Physical Review, vol. 94, 1954. pp. 1792, Phys. Rev. https://doi.org/10.1103/PhysRev.94.1792

W.H. Meiklejohn, C.P. Bean, “New magnetic anisotropy”, Physical review, vol. 102, iss. 5, pp. 1413-1414, Phys. Rev. 1956. https://doi.org/10.1103/PhysRev.102.1413

G. Magda, X. Jin, I. Hagymasi, P.V ancso, Z.O svath, P. Nemes-Incze, C. Hwang, L.P. Biro, L. Tapaszto, “Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons”, Nature, vol. 514, no. 7524, pp. 608-611. https://doi.org/10.1038/nature13831.

J. Heremans, C. H. Olk, D. T. Morelli, “Magnetic susceptibility of carbon structures”, Physical review B, vol. 49, iss. 21, pp. 15122-15125, J. Phys Rev B, 1994. https://doi.org/10.1103/PhysRevB.49.15122.

S.G. Lebedev, “Carbon superconductivity”, Priroda, vol. 8, pp. 38-44, 2007.

N.B. Brandt, S.V. Kuvshinnikov, A.P. Rusakov, M.V. Semenov, “Anomalous diamagnetism (high-temperature Meissner effect) in the compound CuCl”, Pisma Zh. Eksp. Teor. Fiz., vol. 27, iss. 21, pp. 37-43, 1978.

L.R. Shi, Z.C. Xia, Z. Jin, M. Wei, J.W. Huang, B.R .Chen, L.X. Xiao, H.K. Zuo, Z.W. Ouyang, “High magnetic field induced spin flip/flop behavior and magnetic phase diagram of CuFe1-X GaxO2”, Journal of Solid State Chemistry, vol. 219, pp. 152-158, 2014. https://doi.org/10.1016/j.jssc.2014.07.028

A.N. Bogdanov, A.V. Zhuravlev, U.K. R¨oßler, “Spin-flop transition in uniaxial antiferromagnets: magnetic phases, reorientation effects, multidomain states”, Physical review B, Condensed matter, vol. 75, iss. 9, pp. 1-15, 2007. https://doi.org/10.1103/PhysRevB.75.094425.

M.S. Seehra, U.K. Geddam, D. Schwegler-Berry, A.B. Stefaniak, “Detection and quantification of 2H and 3R phases in commercial graphene-based materials”, Carbon, vol. 95, pp. 818–823, 2015. https://doi.org/10.1016/j.carbon.2015.08.109

K.S. Subrahmanyam, S.R. C.Vivekchand, A. Govindaraj, C.N.R. Rao, “A study of graphenes prepared by different methods: characterization,properties and solubilization”, Journal of Materials Chemistry, vol.18, pp. 604-610, Mater. Chem., 2008. https://doi.org/10.1039/b716536f

A.C. Ferrari, “Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects”. Solid State Comm, vol. 143, iss. 1-2, pp. 47-57, 2007. https://doi.org/10.1016/j.ssc.2007.03.052

F. Chandoul, H .Moussa, K. Jouini, A. Boukhachem, F. Hosni, M.S. Fayache, R. Schneider, “Investigation of the properties of nanostructured nickel oxide NiO thinfilms irradiated at different γ-doses NiO”, Journal of Materials Science: Materials in Electronics, vol. 30, pp. 348-358, 2019. https://link.springer.com/article/10.1007/s10854-018-0299-z

D.V. Shtanskij, N.A. Glushankova, F.V. Kirjuhancev-Korneev, A.N. Shevejk, A.A. Sigarev, “Sravnitel'noe issledovanie struktury i citotoksichnosti politetraftorjetilena posle ionnogo travlenija i ionnoj implantacii”, Fizika tverdogo tela, vol. 53, no. 3, pp. 13-14, 2011.

J. Meng, D. Shi, G. Zhang. “A review of nanographene: growth and applications”, “Modern Physics Letters B”, vol. 28, no. 20, 1430009, 2014. https://doi.org/10.1142/S021798491430009

A. Ju. Lukonin, V. Ju. Markov, O. V. Boltalina, “Sintez ftorfullerenov v reakcijah s neorganicheskimi ftoridami”, Vestnik Moskovskogo Universiteta, vol. 42, no.1, 2001.

V.G. Kuryavyi, V.M. Bouznik, Y. N. Nikolenko, O.O. Shichalin, “Forms of carbon obtained from PTFE by processing in plasma of pulsed high-voltage discharge and then annealing”, Materials Today: Proceedings, vol. 5, pp. 26166–26170, 2018. https://doi.org/10.1016/j.matpr.2018.08.048

Downloads

Published

2021-10-10

Issue

Section

Research Articles

How to Cite

[1]
V. G. Kuryavyi, “Nanocomposite Obtained in the Plasma of a Pulsed High Voltage Discharge Using Nickel Electrodes and PTFE”, Adv. Nan. Res., vol. 4, no. 1, pp. 10–26, Oct. 2021.