Synthesis and Characterization of Tellurium Microtubes

Authors

DOI:

https://doi.org/10.21467/jmm.12.1.7-17

Abstract

Tellurium (Te) is a potential material for multiple applications due to its distinct features, including its anisotropic crystal structure and narrow bandgap energy. In this work, we use the chemical vapor transport reaction (CVT) method to synthesize tellurium microtubes (Te MTs) with hexagonal and rectangular cross-sections. The structure and composition of the Te MTs were analyzed using characterization methods such as, X-ray powder diffraction (XRD), selected-area electron diffraction (SAED), and energy-dispersive X-ray spectroscopy (EDS). Furthermore, computational techniques such as density functional theory (DFT) computations were utilized to examine the electronic and the optical properties of bulk Te.

Keywords:

Tellurium Microtubes, Electronic microscopy, DFT

Downloads

Download data is not yet available.

References

U. Coscia, G. Ambrosone, M. Palomba, S. Binetti, A. Le Donne, D. Siliqi, and G. Carotenuto. Photoconductivity of tellurium-poly (methyl methacrylate) in the ultraviolet-visible-near infrared range. Applied Surface Science, Vol 457, pp. 229-234, 2018. DOI : https://doi.org/10.1016/j.apsusc.2018.06.221

D. Matteo, S. Y. Tochitsky and C. Joshi. Tellurium crystal pumped with ultrafast 10 µm pulses demonstrates a giant nonlinear optical response. Optics Express, Vol 31(17), pp. 27239-27254, 2023. DOI : https://doi.org/10.1364/OE.497186

S. Lin, W. Li, Z. Chen, J. Shen, B. Ge and Y. Pei. Tellurium as a high-performance elemental thermoelectric. Nature communications, Vol 7(1), p.10287, 2016. DOI: https://doi.org/10.1038/ncomms10287

L. Tao, Z. Jun-Wei, W. Dong-rui and D. Zhi-Min. Remarkable piezoresistance effect on the flexible strain sensor based on a single ultralong tellurium micrometre wire. Journal of Physics D: Applied Physics, Vol 47(50), p. 505103, 2014. DOI : https://doi.org/10.1088/0022-3727/47/50/505103

D. Sári, A. Ferroudj, D. Semsey, H. El-Ramady, E. C. Brevik and J. Prokisch. Tellurium and Nano-Tellurium: Medicine or Poison? Nanomaterials, Vol 14(8), p.670, 2024. DOI: https://doi.org/10.3390/nano14080670

A. Das and B. K. Banik. Semiconductor characteristics of tellurium and its implementations. Physical Sciences Reviews, Vol 8(12), pp. 4659-4687, 2023. DOI : https://doi.org/10.1515/psr-2021-0108

M. C. Zambonino, E. M. Quizhpe, F. E. Jaramillo, A. Rahman, N. Santiago Vispo, C. Jeffryes and S. A. Dahoumane. Green synthesis of selenium and tellurium nanoparticles: current trends, biological properties and biomedical applications. International journal of molecular sciences, Vol 22(3), p. 989, 2021. DOI : https://doi.org/10.3390/ijms22030989

V. Miranda La Hera, X. Wu, J. Mena, H. R. Barzegar, A. Ashok, S. Koroidov, T. Wågberg and E. Gracia-Espino. Controlled Synthesis of Tellurium Nanowires. Nanomaterials, Vol 12(23), p. 4137, 2022. DOI : https://doi.org/10.3390/nano12234137

H. Zhu, L. Fan, K. Wang, H. Liu, J. Zhang and S. Yan. Progress in the Synthesis and Application of Tellurium Nanomaterials. Nanomaterials, Vol 13(14), p. 2057, 2023. DOI : https://doi.org/10.3390/nano13142057

D. Tsiulyanu. Gas sensing features of nanostructured tellurium thin films. Beilstein Journal of Nanotechnology, Vol 11(1), pp. 1010-1018, 2020. DOI : https://doi.org/10.3762/bjnano.11.85

A. Kramer, M. L. Van de Put, C. L. Hinkle and W. G. Vandenberghe. Tellurium as a successor of silicon for extremely scaled nanowires: a first-principles study. npj 2D Materials and Applications, Vol 4(1), p. 10, 2020. DOI : https://doi.org/10.1038/s41699-020-0143-1

A. Singh, J. S. Dhau, R. Kumar, R. Badru, and A. Kaushik. Exploring fluorescence properties of tellurium-containing molecules and their advanced applications. Physical Chemistry Chemical Physics, Vol 26, pp. 9816-9847, 2024. DOI: https://doi.org/10.1039/D3CP05740B

C. Liu, R. Wang and Y. Zhang. Tellurium Nanotubes and Chemical Analogues from Preparation to Applications: A Minor Review. Nanomaterials, Vol 12(13), p. 2151, 2022. DOI : https://doi.org/10.3390/nano12132151

J. Li, Q. Yang, D. He, Y. Wang, E. Hwang, and Y. Yang. Morphology-controlled synthesis, growth mechanism, and applications of tellurium nanostructures. Materials Advances, Vol 5, pp. 7548-7560, 2024. DOI: https://doi.org/10.1039/d4ma00572d

B. Mayers and Y. Xia. One-dimensional nanostructures of trigonal tellurium with various morphologies can be synthesized using a solution-phase approach. Journal of Materials Chemistry, Vol 12(6), pp. 1875-1881, 2002. DOI : https://doi.org/10.1039/B201058E

P. Mohanty, T. Kang, B. Kim, and J. Park. Synthesis of single crystalline tellurium nanotubes with triangular and hexagonal cross sections. The Journal of Physical Chemistry B, Vol 110(2), pp. 791-795, 2006. DOI : https://doi.org/10.1021/jp0551364

Y. Xia, P; Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim and H. Yan. One- dimensional nanostructures: synthesis, characterization, and applications. Advanced materials, Vol 15(5), pp. 353-389, 2003. DOI : https://doi.org/10.1002/adma.200390087

J. W. Liu, J. Xu, W. Hu, J. L. Yang and S. H. Yu. Systematic synthesis of tellurium nanostructures and their optical properties: from nanoparticles to nanorods, nanowires, and nanotubes. Chem Nano Mat, Vol 2(3), pp. 167-170, 2016. DOI : https://doi.org/10.1002/cnma.201500206

H. Zhu, L. Fan, K. Wang, H. Liu, J. Zhang and S. Yan. Progress in the Synthesis and Application of Tellurium Nanomaterials. Nanomaterials, 13(14), p. 2057, 2023. DOI : https://doi.org/10.3390/nano13142057

H. Zhu, H. Zhang, J. Liang, G. Rao, J. Li, G. Liu, Z. Du, H. Fan and J. Luo. Controlled synthesis of tellurium nanostructures from nanotubes to nanorods and nanowires and their template applications. The Journal of Physical Chemistry C, Vol 115(14), pp. 6375-6380, 2011. DOI : https://doi.org/10.1021/jp200316y

G. Qiu, A. Charnas, C. Niu, Y. Wang, W. Wu and P. D. Ye. The resurrection of tellurium as an elemental two-dimensional semiconductor. npj 2D Materials and Applications, Vol 6(1), p. 17, 2022. DOI : https://doi.org/10.1038/s41699-022-00293-w

X. Zhao, J. Shi, Q. Yin, Z. Dong, Y. Zhang, L. Kang, Q. Yu, C. Chen, J. Li, X. Liu and K. Zhang. Controllable synthesis of high-quality two-dimensional tellurium by a facile chemical vapor transport strategy. I Science, Vol 25(1). 2022. DOI : https://doi.org/10.1016/j.isci.2021.103594

A. Chen, S. Ye, Z. Wang, Y. Han, J. Cai and J. Li. Machine-learning-assisted rational design of 2D doped tellurene for fin field-effect transistor devices. Patterns, 4(4), 2023. DOI : https://doi.org/10.1016/j.patter.2023.100722

T. Zhu, Y. Zhang, X. Wei, M. Jiang and H. Xu. The rise of two-dimensional tellurium for next-generation electronics and optoelectronics. Frontiers of Physics, Vol 18(3), p. 33601, 2023 DOI : https://doi.org/10.1007/s11467-022-1231-9

A. M. Qin, Y. P. Fang, and C. Y. Su. One-step fabrication of selenium and tellurium tubular structures. Inorganic Chemistry Communications, Vol 7(9), pp. 1014-1016, 2004. DOI : https://doi.org/10.1016/j.inoche.2004.07.003

T. Siciliano, E. Filippo, A. Genga, G. Micocci, M. Siciliano, and A. Tepore. Tellurium microtubes synthesized by thermal evaporation method. Crystal Research and Technology, Vol 46(8), pp. 765-768, 2011. DOI : https://doi.org/10.1002/crat.201000578

J. Lu, Y. Xie, F. Xu and L. Zhu. Study of the dissolution behavior of selenium and tellurium in different solvents—a novel route to Se, Te tubular bulk single crystals. Journal of Materials Chemistry, Vol 12(9), pp. 2755-2761, 2002. DOI : https://doi.org/10.1039/B204092A

Phase Analysis using Powder Diffraction, Version 3.x, Crystal Impact - Dr. H. Putz & Dr. K. Brandenburg GbR, Kreuzherrenstr. 102, 53227 Bonn, Germany, https://www.crystalimpact.de/match

Bruker (2006). APEX2, SAINT, Bruker AXS Inc., Madison, Wisconsin, USA 2006.

G. M. Sheldrick. Program for the refinement of crystal structures. SADABS, Bruker AXS Inc., Madison, Wisconsin, USA 2002. http:// shelx.uni-ac.gwdg.de/shelx/

L. Palatinus and G. Chapuis. SUPERFLIP-a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. Journal of Applied Crystallography, Vol 40, pp. 786-790, 2007. DOI : https://doi.org/10.1107/S0021889807029238

V. Petříček, M. Dušék and L. Palatinus. The crystallographic computing system. JANA, 2006 Institute of Physics, Praha, Czech Republic, 2006. http://www-xray.fzu.cz

K. Brandenburg and H. Putz. (2006). Diamond. Crystal Impact GbR, Bonn, Germany. http://www.crystalimpact.de

S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. Probert, K. Refson, M. C. Payne. First principles methods using CASTEP. Zeitschrift für kristallographie-crystalline materials, Vol 220(5-6), pp. 567-570, 2005. DOI : https://doi.org/10.1524/zkri.220.5.567.65075

Materials Studio CASTEP Manual © Accelrys, 2010. http://www.tcm.phy.cam.ac.uk/castep/documentation/WebHelp/CASTEP.html.

L. Kleinman and D. M. Bylander. Efficacious form for model pseudopotentials. Physical Review Letters, Vol 48(20), p. 1425, 1982. DOI : https://doi.org/10.1103/PhysRevLett.48.1425

J. Heyd and G. E. Scuseria. Assessment and validation of a screened Coulomb hybrid density functional. The Journal of chemical physics, Vol 120(16), pp. 7274-7280, 2004. DOI: https://doi.org/10.1063/1.1668634

C. Adenis, V. Langer and O. Lindqvist. Reinvestigation of the structure of tellurium. Acta Crystallographica Section C: Crystal Structure Communications, Vol 45(6), pp. 941-942, 1989. DOI: https://doi.org/10.1107/S0108270188014453

V. B. Anzin, M. I. Eremets, Y. V. Kosichkin, A. I. Nadezhdinskii, and A. M. Shirokov. Measurement of the energy gap in tellurium under pressure. physica status solidi (a), Vol 42(1), pp. 385-390, 1977. DOI : https://doi.org/10.1002/pssa.2210420143

D. K. Sang, B. Wen, S. Gao, Y. Zeng, F. Meng, Z. Guo and H. Zhang. Electronic and optical properties of two-dimensional tellurene: from first-principles calculations. Nanomaterials, Vol 9(8), p. 1075, 2019. DOI : https://doi.org/10.3390/nano9081075

M. Cheng, S. Wu, Z. Z. Zhu and G. Y. Guo. Large second-harmonic generation and linear electro-optic effect in trigonal selenium and tellurium. Physical Review B, Vol 100(3), p. 035202, 2019. DOI: https://doi.org/10.1103/PhysRevB.100.035202

M. Cheng, Z. Z. Zhu and G. Y. Guo. Strong bulk photovoltaic effect and second-harmonic generation in two-dimensional selenium and tellurium. Physical Review B, Vol 103(24), p. 245415, 2021. DOI: https://doi.org/10.1103/PhysRevB.103.245415

V. G. Orlov and G. S. Sergeev. . Electronic band structure and chemical bonding in trigonal Se and Te. AIP Advances, Vol 12(5), 2022. DOI: https://doi.org/10.1063/5.0087880

J. Zha, D. Dong, H. Huang, Y. Xia, J. Tong, H. Liu, H. P. Chan, J. C. Ho, C. Zhao, Y. Chai and C. Tan. Electronics and Optoelectronics Based on Tellurium. Advanced Materials, Vol 36, p. 2408969, 2024. DOI: https://doi.org/10.1002/adma.202408969

P. Ghosh, M. U. Kahaly and U. V. Waghmare. Atomic and electronic structures, elastic properties, and optical conductivity of bulk Te and Te nanowires: A first-principles study. Physical Review B, Vol 75(24), p. 245437, 2007. DOI: https://doi.org/10.1103/PhysRevB.75.245437

K. W. Song, J. H. Bae, H. K. Kim, T. H. Kim, M. H. Park and C. W. Yang. Fabrication of CdTe/Te Hetero-Nanostructures by Vapor-Solid Process. Journal of Nanoscience and Nanotechnology, Vol 11(7), pp. 6559-6562, 2011. DOI : https://doi.org/10.1166/jnn.2011.4410

X. Lv, F. L. Y. Lam, and X. Hu. A review on bismuth oxyhalide (BiOX, X= Cl, Br, I) based photocatalysts for wastewater remediation. Frontiers in Catalysis, Vol 2, p. 839072, 2022. DOI : https://doi.org/10.3389/fctls.2022.839072

R. Zhuang, S. Cai, Z. Mei, H. Liang, N. Zhao, H. Mu, W. Yu, Y. Jiang, J. Yuan, S. Lau and S. Deng. Solution-grown BiI/BiI3 van der Waals heterostructures for sensitive X-ray detection. Nature Communications, Vol 14(1), p. 1621, 2023. DOI : https://doi.org/10.1038/s41467-023-37297-z

L. Bethencourt, I. Aguiar, M. Pérez Barthaburu, D. Oreggioni, R. Costa de Santana, L. J. Queiroz Maia and L. Fornaro. From a novel synthesis method for bismuth tri-iodide nanoparticles to a solution-processed hybrid material: BiI3-conducting polymer. Journal of Materials Science, Vol 57(37), pp.17592-17608, 2022. DOI : https://doi.org/10.1007/s10853-022-07703-w

F. Arjmand, Z. Golshani, S. J. Fatemi, S. Maghsoudi, A. Naeimi and S. M. A. Hosseini. The lead-free perovskite solar cells with the green synthesized BiI3 and AgI nanoparticles using Vitex agnus-castus plant extract for HTM-free and carbon-based solar cells. Journal of Materials Research and Technology, Vol 18, pp. 1922-1933, 2022. DOI : https://doi.org/10.1016/j.jmrt.2022.03.088

J. Hu, Z. Chen, H. Jiang, Y. Sun, Y. Bando and D. Golberg. Rectangular or square, tapered, and single-crystal PbTe nanotubes. Journal of Materials Chemistry, Vol 19(19), pp. 3063-3068, 2009. DOI : https://doi.org/10.1039/B822303C

I. M. Bolesta, I. N. Rovetskyj, I. D. Karbovnyk, and M. V. Partyka. Formation of microtubes in CdI2 crystals doped with BiI3. Technical Physics Letters, Vol 39, pp. 463-465, 2013. DOI : https://doi.org/10.1134/S1063785013050180

J. S. Jeong, J. Y. Lee, J. H. Cho, H. J. Suh and C. J. Lee. Single-crystalline ZnO microtubes formed by coalescence of ZnO nanowires using a simple metal-vapor deposition method. Chemistry of materials, Vol 17(10), pp. 2752-2756, 2005. DOI : https://doi.org/10.1021/cm049387l

G. Zhu, M. Hojamberdiev, P. Liu, J. Peng, J. Zhou, X. Bian and X. Huang. The effects of synthesis parameters on the formation of PbI2 particles under DTAB-assisted hydrothermal process. Materials Chemistry and Physics, Vol 131(1-2), pp. 64-71, 2011. DOI : https://doi.org/10.1016/j.matchemphys.2011.07.010

A. Gómez -Herrero, A. R. Landa-Canovas, S. Hansen and L. C. Otéro- Diáz. Electron microscopy study of tubular crystals (BiS)1+ δ(NbS2)n. Micron, Vol 31(5), pp. 587-595, 2000. DOI : https://doi.org/10.1016/S0968-4328(99)00141-9

Downloads

Published

2025-02-13

Issue

Section

Research Article

How to Cite

[1]
M. Kars, A. G. Herrero, and T. Roisnel, “Synthesis and Characterization of Tellurium Microtubes”, J. Mod. Mater., vol. 12, no. 1, pp. 7–17, Feb. 2025.