Effect of Microwave Sintering on Electrical Properties of Sr-deficient and Bi-rich Strontium Bismuth Niobate (Sr0.8Bi2.2Nb2O9) Ferroelectric Ceramic
DOI:
https://doi.org/10.21467/jmm.1.1.35-45Abstract
Nonstoichiometric strontium bismuth niobate (Sr0.8Bi2.2Nb2O9: SBN) ceramic was prepared using conventional solid-state reaction and microwave sintering methods. Complex impedance spectroscopy (CIS) has been used to investigate the intra and intergranular contribution to the impedance SBN ceramics as a function of temperature and frequency. Complex impedance Cole‑Cole plots were used to interpret the relaxation mechanism in SBN ceramic which showed a non-Debye relaxation. The grain and grain boundary contribution to conductivity have been estimated from the Cole‑Cole plots. The bulk (grain) resistance of both samples was found to decrease with rise in temperature indicating negative temperature coefficient of resistance (NTCR) type behavior like that of semiconductors. The microwave sintered SBN was found to have low value of bulk resistance indicating more increase in conductivity as compared to conventionally sintered SBN. The temperature dependence of the relaxation time was found to obey the Arrhenius law. Studies of electrical modulus show the presence of hoping conduction mechanism in SBN.
Keywords:
Bismuth layer Ferroelectric ceramics, Microwave sintering, Complex impedance and modulus spectroscopy.Downloads
References
De Araujo, C. A. P., Cuchiaro, J. D., McMillan, L. D., Scott, M. C. & Scott, J. F., “Fatigue free ferroelectric capacitors with platinum electrodes”, Nature., V. 374, pp 627 629, 1995.
Yao, Zhongran, et al. "Preparation and electrical properties of MoO 3-modified SrBi 2 Nb 2 O 9-based lead-free piezoelectric ceramics." Journal of Alloys and Compounds, V. 666, pp. 10-14, 2016.
Yao, Zhongran, et al. "Preparation and electrical properties of SrBi2− x Sm x Nb2O9 lead-free piezoelectric ceramics." Journal of Materials Science: Materials in Electronics, V.27, No.2, pp2114-2119.B, 2016.
B. Aurivillius, Mixed bismuth oxides with layer lattices. I. Structure type of CaCb2Bi2O9, Ark Kemi 1 , pp.463 480, 1949.
B. H. Park, B. S. Kang, S.D. Bu, T. W. Noh, J. Lee, W. Jo, “Lanthanum-substituted bismuth titanate for use in non-volatile memories”, Nature, V. 401, pp. 682-684, 1999.
T. Wei, C. Z. Zhao, Q. J. Zhou, Z. P. Li, Y. Q. Wang, L.s Zhang, Bright green up conversion emission and enhanced ferroelectric polarization in Sr1−1.5xErxBi2Nb2O 9, Optical. Mater. V. 36, pp. 1209-1212, 2014.
Z. Yao, R. Chu, Z. Xu, J. Hao, D. Wei, G. Li, “Dielectric, ferroelectric and piezoelectric properties of Ca0.1Sr0.9Bi2Nb2O9 ceramic”, J. Mater. Sci.: Mater. Electron. V. 26, pp.8740 8746, 2015.
I. Coondoo, A. K. Jha, S. K. Agarwal, “Enhancement of dielectric characteristics in donor doped Aurivillius SrBi2Ta2O9 ferroelectric ceramics”, J. Eur. Ceram. Soc. V. 27, pp. 253 260, 2007.
D. Kajewski, Z. Ujma, K. Szot, M. Pawełczyk, “Dielectric properties and phase transition in SrBi2Nb2O9–SrBi2Ta2O9 solid solution”, Ceram. Int. V. 35 pp. 2351 2355, 2009.
W. Wu, S. Liang, X. Wang, J. Bi, P. Liu, L. Wu “Synthesis, structures and photo catalytic activities of microcrystalline ABi2Nb2O9 (A = Sr, Ba) powders”, J. Solid State Chem. V. 184, pp.81–88, 2011.
D. Dhak, P. Dhak, P. Pramanik, “Influence of substitution on dielectric and impedance spectroscopy of Sr1-xBi2+yNb2O9 ferroelectric ceramics synthesized by chemical route”, Appl. Surf. Sci. V. 254, pp. 3078-3092, 2008.
D. Nelis, D. Mondelaers, G. Vanhoyland, A. Hardy, K. Van Werde, H. V. den Rul, M. K. Van Bael, J. Mullens, l. C. Van Pocke, J. D. Haen, “Synthesis of strontium bismuth niobate (SrBi2Nb2O9) using an aqueous acetate–citrate precursor gel: thermal decomposition and phase formation”, Thermochemica. Acta. V. 426, pp.39-48, 2005.
D. Prasanta, D. Debasis, P. Kausikisankar, P. Panchanan, “Studies of structural and electrical properties of Ca1−xBi2+yNb2O9 [0.0 ≤ x ≤ 0.4; 0.000 ≤ y ≤ 0.266] ferroelectric ceramics prepared by organic precursor decomposition method”, Solid State Sci. V. 10 , pp.1936 1946, 2008.
N. L. A Junior, A. Z. Simoes, A. A. Cavalheiro, S. M. Zanetti, E. Longo, J. A. Varela “Structural and microstructural characterization of SrBi2(Ta0.5Nb0.48W0.02)2O9 powders”. J Alloy. Compd. V. 454, pp. 61 65, 2008.
S. P. Gaikwad, S. R. Dhage, H. S. Potdar, V. Samuel, V. Ravi, “Co-precipitation method for the preparation of nanocrystalline ferroelectric SrBi2Nb2O9 ceramics”, J. Electroceram. V. 14, pp. 83 87, 2005.
S. P. Gaikwad, H. S. Potdar, V. Samuel, V. Ravi, “Co-precipitation method for the preparation of fine ferroelectric BaBi2Nb2O9,” Ceram. Int. V. 31 pp. 379 381, 2005.
K. Kato, C. Zheng, J. M. Finder, S. K. Dey, Y. Torii, “Sol–gel route to ferroelectric layer-structured perovskite SrBi2Ta2O9 and SrBi2Nb2O9 thin films”, J. Am. Ceram. Soc. V. 81, pp.1869 1875, 1998.
D. Nelis, K. V. Werde, D. Mondelaers, G. Vanhoyland, H. V. D. Rul, M. K. V. Bael, J. Mullens, L. C. V. Poucke, “Aqueous solution gel synthesis of strontium bismuth niobate (SrBi2Nb2O9)”, J. Sol Gel Sci. Technol. V. 26, pp.1125 1129, 2003.
S. M. Zanetti, E. I. Santiago, L. O. S. Bulhoes, J. A. Varela, E. R. Leite, E. Longo, “Preparation and characterization of nanosized SrBi2Nb2O9 powder by the combustion synthesis”, Materials Letters V. 57, pp. 2812-2816, 2003.
A. Kumar, S. R. Emani, V. V. B. Prasad, K. C. J. Raju, A. R. James, “Microwave sintering of fine grained PLZT 8/60/40 ceramics prepared via high energy mechanical milling”, J. Eur. Ceram. Soc. V. 36, no. 10, pp. 2505 2511, 2016.
X. H. Zhu, Q. M. Hang, “Microscopical and physical characterization of microwave and microwave-hydrothermal synthesis products”, Micron. V. 44, pp. 21 44, 2013.
D. Agarwal, “Microwave sintering of ceramics, composites and metal powders, In: Z. Z. Fang Ed. Sintering of advanced materials”, UK: Woodhead Publishing; pp. 222 248, 2010.
N. Azurmendi, I. Karo, A. C. Caballero, T. Jardiel T, M. Villegas, “Microwave Assisted Sintering of Bismuth Titanate-Based Ceramics”, J. Am. Ceram. Soc. V. 80, pp.1232 1236, 2006.
S. Kumar, M. Panneerselvam, K. J. Rao, “Microwave Synthesis and Sintering of Bi4Ti3O12, the Aurivilllius Compound: Structural and Chemical Effects of attempted Lithiation”, Ferroelectr. V. 306, pp.165 177, 2004.
Sugandha, A. K. Jha, “Synthesis and characterization of nanocrystalline ferroelectric Sr0.8Bi2.2Ta2O9 by conventional and microwave sintering: A comparative study”, Mater. Res. Bull. V. 48, pp. 1553 1559, 2013.
S. N. Kumar, P. Kumar, D. K. Agrawal, “Structural, dielectric and ferroelectric properties of SBN ceramics synthesized by microwave reactive sintering technique”, Ceram. Int. V. 38, pp5243 5250, 2012.
A. Dias A, R. L. Moreira, “Production of Sr-deficient bismuth tantalates from microwave hydrothermal derived precursors: Structural and dielectric properties”, J. Phys. Chem. Solids. V. 68, pp. 645 649, 2007.
T. Noguchi, T. Hase, Y. Miyasaka, “Analysis of the Dependence of Ferroelectric Properties of Strontium Bismuth Tantalate (SBT) Thin Films on the Composition and Process Temperature”, Jpn. J. Appl. Phys. V. 35,pp 4900 4904, 1996.
T. Atsuki, N. Soyama, T. Yonezawa, K. Ogi, “Preparation of Bi-Based Ferroelectric Thin Films by Sol-Gel Method”, Jpn. J. Appl. Phys. V. 34, pp. 5096 5099, 1995.
H. M. Tsai, P. Lin, T.Y. Tseng, “Sr0.8Bi2.5Ta1.2Nb0.9O9+x ferroelectric thin films prepared by two-target off-axis radio frequency magnetron sputtering”, Appl. Phys. Lett. V. 72, pp.1787 1789, 1998.
R. Singh, V. Luthra, R. S. Rawat, R. P. Tandon, “Structural, dielectric and piezoelectric properties of SrBi2Nb2O9 and Sr0.8Bi2.2Nb2O9 ceramics”, Ceram. Int. v. 41, pp.4468 4478, 2015.
Y. Wu, M. J. Forbess, S. Seraji, S. J. Limmer, T. Chou, G. Z. Cao, “Impedance study of SrBi2Ta2O9 and SrBi2(Ta0.9V0.1)2O9 ferroelectrics”, Mater. Sci. Eng. B v. 86, pp 70 78, 2001.
T. C. Chen, C. L. Thio, S. B. Desu, “Impedance spectroscopy of SrBi2Ta2O9 and SrBi2Nb2O9 ceramics correlation with fatigue behavior”, J. Mater. Res., v. 12, pp. 2628 2637, 1997.
J. R. Macdonald, “Impedance spectroscopy”, Wiley, New York, 1987.
K. S. Rao, D. M. Prasad, P. M. Krishna, B. Tilak, K. Ch. Varadarajulu, “Impedance and modulus spectroscopy studies on Ba0.1Sr0.81La0.06Bi2Nb2O9 ceramic”, Mater. Sci. Eng. B, v. 133, pp.141 150, 2006.
K. S. Rao, D. M. Prasad, P. M. Krishna, B. H. Bindu, K. Suneetha, “Frequency and temperature dependence of electrical properties of barium and gadolinium substituted SrBi2Nb2O9 ceramics”, J. Mater. Sci. v. 42, pp.7363 7374, 2007.
C. K. Suman, K. Prasad, R. N. P. Choudhary, “Complex impedance studies on tungsten-bronze electroceramic: Pb2Bi3LaTi5O18,” J. Mater. Sci., v. 41, pp.369 375, 2006.
K. S. Cole, R. H. Cole, “Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics”, J. Chem. Phys., v. 9 , pp341 351, 1941.
I. Coondoo, N. Panwar, A. Tomar, A.K. Jha, S.K. Agarwal, “Impedance spectroscopy and conductivity studies in SrBi2(Ta1-xWx)2O9 ferroelectric ceramics”, Phys. B , v.407, pp. 4712-4720, 2012.
D. C. Sinclair, A. R. West, “Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance”, J. Appl. Phys., v. 66, pp. 3850-3856, 1989.
B. Behera, P. Nayak, R. N. P. Choudhary, “Structural and impedance properties of KBa2V5O15 ceramics”, Mater. Res. Bull., v. 43, pp. 401-410, 2008.
E. Barsoukov, J. R. M., ed. “Impedance Spectroscopy”, John-Willey: New York. Pp. 305-314, 2005.
J. S. Kim, B. C. Choi, H. K. Yang, J. H. Jeong, S.T. Chung, S. B. Cho, “Low Frequency Dielectric Dispersion and Electrical Conductivity of Pure and La-Doped SrBi2Nb2O9 Ceramics”, J. Korean Phys. Soc. V.52, pp. 415 420, 2008.
I. W. Kim, C. W. Ahn, J. S. Kim, T. K. Song, J. S. Bae, B. C. Choi, J. H. Jeong, J. S. Lee, “Low-frequency dielectric relaxation and ac conduction of SrBi2Ta2O9 thin film grown by pulsed laser deposition”, Appl. Phys. Lett. V. 80, pp. 4006, 2002.
P. B. Macedo Macedo, C. T. Moynihan, R. Boseat, “Role of ionic diffusion in polarization in vitreous ionic conductors”, Phys. Chem. Glasses, v. 13, pp.171 179, 1992.
R. N. P. Choudhary, D. K. Pradhan, C. M. Tirado, G. E. Bonilla, R. S. Katiyar, “Impedance characteristics of Pb(Fe2/3W1/3)O3 BiFeO3 composites”, Phys. Status Solidi B, v. 244, pp.2254 2266, 2007.
R. Gerhardt, “Impedance and Dielectric Spectroscopy Revisited: Distinguishing Localized Relaxation from Long-Range Conductivity” J. Phys. Chem. Solids, V. 55 pp. 1491 1506, 1994.
Downloads
Published
Issue
Section
How to Cite
Funding data
-
Department of Science and Technology, Ministry of Science and Technology
Grant numbers 102/IFD/DBT/SAN/1911/2008-09
License
Copyright (c) 2016 RAJVEER SINGH, Vandna Luthra, Ram Pal Tandon
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Click here for more information on Copyright policy
Click here for more information on Licensing policy