Weight Reduction in Aluminum Metal Matrix Composite by Adding Copper Slag as A Reinforcement





The aim of this paper is to fabricate aluminum metal matrix composite which should have less weight than aluminum and better mechanical property. Copper slag (waste from copper extraction) is taken as a reinforcement and the metal matrix composite of aluminum 95% and copper slag 5% was fabricated using the stir casting method. The particle distribution is verified by an optical microscope. Mechanical properties of the composite were calculated by conducting the tensile test, impact test, and hardness test, and the calculated values are compared with the theoretical value and aluminum.  The chemical composition of the copper slag is tested and checked with literature values. The tensile strength, hardness, and impact strength of the composite is increased when compared with base metal aluminum but the weight of the composite is less.


AMMC, Stir casting, XRF PMI, Rule of mixture


Download data is not yet available.


S. Yolcular Karaoglu, S. Karaoglu, and I. Unal, “Aerospace Industry and Aluminum Metal Matrix Composites,” Int. J. Aviat. Sci. Technol., vol. vm02, no. is02, pp. 73–81, 2021, doi: 10.23890/ijast.vm02is02.0204.

S. M. Storck, I. D. Mccue, T. J. Montalbano, S. M. Nimer, and C. M. Peitsch, “Metal Matrix Composites Synthesized with Laser-Based Additive Manufacturing,” Johns Hopkins APL Tech. Dig., vol. 35, no. 4, pp. 16–18, 2021, [Online]. Available: www.jhuapl.edu/techdigest.

G. C. Wang, “Nonferrous metal extraction and nonferrous slags,” Util. Slag Civ. Infrastruct. Constr., pp. 35–61, 2016, doi: 10.1016/b978-0-08-100381-7.00003-3.

K. S. Al-Jabri, M. Hisada, S. K. Al-Oraimi, and A. H. Al-Saidy, “Copper slag as sand replacement for high performance concrete,” Cem. Concr. Compos., vol. 31, no. 7, pp. 483–488, 2009, doi: 10.1016/j.cemconcomp.2009.04.007.

G. Kalusuraman, S. Thirumalai Kumaran, M. Aslan, T. Küçükömeroğluc, and I. Siva, “Use of waste copper slag filled jute fiber reinforced composites for effective erosion prevention,” Meas. J. Int. Meas. Confed., vol. 148, 2019, doi: 10.1016/j.measurement.2019.106950.

J. P. Wang and U. Erdenebold, “A study on reduction of copper smelting slag by carbon for recycling into metal values and cement raw material,” Sustain., vol. 12, no. 4, 2020, doi: 10.3390/su12041421.

A. Prabhakaran and S. Arul, “Characterisation of aluminium alloy (Lm6) metal matrix composite reinforced with copper slag/ferro sand,” Int. J. Innov. Technol. Explor. Eng., vol. 8, no. 10, pp. 3579–3583, 2019, doi: 10.35940/ijitee.J9749.0881019.

V. K. Parikh and A. D. Badgujar, “Fabrication of AA 6351 + 5 % SiC Composite using Stir Casting Process,” vol. 4, no. 1, pp. 1–12, 2021.

M. Meignanamoorthy et al., “Microstructure, mechanical properties, and corrosion behavior of boron carbide reinforced aluminum alloy (Al-fe-si-zn-cu) matrix composites produced via powder metallurgy route,” Materials (Basel)., vol. 14, no. 15, 2021, doi: 10.3390/ma14154315.

M. S. Guptha, G. Akhil, V. Reshma, P. H. Laxmi, and J. Jawahar, “Fabrication and comparision of AA7005/SiC-Al2O3and other composite materials using different methods,” AIP Conf. Proc., vol. 2317, no. February, 2021, doi: 10.1063/5.0036139.

H. Ramezani, S. Kazemirad, M. M. Shokrieh, and A. Mardanshahi, “Effects of adding carbon nanofibers on the reduction of matrix cracking in laminated composites: Experimental and analytical approaches,” Polym. Test., vol. 94, p. 106988, 2021, doi: 10.1016/j.polymertesting.2020.106988.

Z. Zheng, Y. Du, Z. Chen, S. Li, and J. Niu, “Experimental and theoretical studies of FRP-Steel composite plate under static tensile loading,” Constr. Build. Mater., vol. 271, p. 121501, 2021, doi: 10.1016/j.conbuildmat.2020.121501.

M. Aktar Zahid Sohag, P. Gupta, N. Kondal, D. Kumar, N. Singh, and A. Jamwal, “Effect of ceramic reinforcement on the microstructural, mechanical and tribological behavior of Al-Cu alloy metal matrix composite,” Mater. Today Proc., vol. 21, no. xxxx, pp. 1407–1411, 2020, doi: 10.1016/j.matpr.2019.08.179.

I. Aatthisugan, A. Razal Rose, and D. Selwyn Jebadurai, “Mechanical and wear behaviour of AZ91D magnesium matrix hybrid composite reinforced with boron carbide and graphite,” J. Magnes. Alloy., vol. 5, no. 1, pp. 20–25, 2017, doi: 10.1016/j.jma.2016.12.004.

Y. Kim, Y. B. Song, and S. H. Lee, “Microstructure and intermediate-temperature mechanical properties of powder metallurgy Ti-6Al-4V alloy prepared by the prealloyed approach,” J. Alloys Compd., vol. 637, pp. 234–241, 2015, doi: 10.1016/j.jallcom.2015.03.019.

I. Aatthisugan et al., “Effect of Sintering Temperature on Microstructure and Mechanical Properties of Aluminium Composites,” IOP Conf. Ser. Mater. Sci. Eng., vol. 912, no. 3, 2020, doi: 10.1088/1757-899X/912/3/032070.

Y. J. Kim, H. Shin, H. Park, and J. D. Lim, “Investigation into mechanical properties of austempered ductile cast iron (ADI) in accordance with austempering temperature,” Mater. Lett., vol. 62, no. 3, pp. 357–360, 2008, doi: 10.1016/j.matlet.2007.05.028.




How to Cite

R. G, “Weight Reduction in Aluminum Metal Matrix Composite by Adding Copper Slag as A Reinforcement”, J. Mod. Mater., vol. 9, no. 1, pp. 11–20, Jun. 2022.