Synthesis, Degradation, Biocompatibility and Drug Release Studies of Bis 2-Hydroxy Ethyl Terephthalate-based Poly (Mannitol-Citric-Sebacate) Ester
DOI:
https://doi.org/10.21467/jmm.1.1.9-16Abstract
Bis 2-Hydroxy Ethyl Terephthalate-based biodegradable poly(mannitol-citric-sebacate) has been synthesized by catalyst-free melt condensation process using two different diacids and Bis 2-Hydroxy Ethyl Terephthalate with D-mannitol as monomers having a potential to be metabolized in vivo. The biocompatibility of the polymer, Bis 2-Hydroxy Ethyl Terephthalate-poly(mannitol-citric-sebacate) has been tested using human primary stromal cells. In vitro degradation of Bis 2-Hydroxy Ethyl Terephthalate-poly(mannitol-citric-sebacate) polymer in Phosphate Buffered Saline solution carried out at physiological conditions indicates that the degradation goes to completion after 23 days. The usage of Bis 2-Hydroxy Ethyl Terephthalate-poly(mannitol-citric-sebacate) polymer as a drug carrier has been analyzed by doping the polymer with Doxorubicin model drug and the release rate has been studied by mass loss over time. The cumulative drug-release profiles exhibit a biphasic release with an initial burst release and cumulative 100 percent release within 14 days.
Keywords:
Bis 2-Hydroxy ethyl terephthalate (BHET), Biodegradable Polymer, Human Primary Stromal Cells, Biocompatibility, Scaffold, Drug-deliveryDownloads
References
U. Edlund, and A. C. Albertsson, “Degradable polymer microspheres for controlled drug delivery,” in Degradable Aliphatic Polyesters, vol. 157, A.C. Albertsson, Ed. Berlin: Springer, pp. 67–112, 2002.
K. E. Uhrich, S. M. Cannizzaro, R. S. Langer, and K. M. Shakesheff, “Polymeric systems for controlled drug release,” Chem. Rev., vol. 99, pp. 3181-3198, Nov., 1999.
A. K., Azab, J., Kleinstern, V., Doviner, B., Orkin, M., Srebnik, A. Nissan, and A., Rubinstein, “Prevention of tumor recurrence and distant metastasis formation in a breast cancer mouse model by biodegradable implant of 131 Inorcholesterol,” J. Control. Release, vol. 123, pp. 116–122, Aug., 2007.
Z. J. Sun, C. Chen, M. Z. Sun, C. H. Ai, X. L. Lu, Y. F. Zheng, B. F. Yang, and D. L. Dong, “The application of poly (glycerol–sebacate) as biodegradable drug carrier,” Biomaterials, vol. 30, pp. 5209–5214, June, 2009.
P. A. Gunatillake, and R. Adhikari, “Biodegradable synthetic polymers for tissue engineering,” Eur. Cells Mater., vol. 5, pp. 1–16, May, 2003.
J. Heller, S. Y. Ng, and B. K. Fritzinger, “Use of poly (ortho esters) for the controlled release of 5-fluorouracyl and a LHRH analogue,” J. Control. Release, vol. 6, pp. 217–224, Dec., 1987.
U. Edlund, and A. C. Albertsson, “Polyesters based on diacid monomers,” Adv. Drug Del. Rev., vol. 55, pp. 585-609, April, 2003.
L. Xue, and H. P. Greisler, “Biomaterials in the development and future of vascular grafts,” J. Vasc. Surg., vol. 37, pp. 472-480, Feb., 2003.
T. Taguchi, H. Saito, M. Iwasashi, M. Sakane, and N. Ochia, “Biodegradable adhesives composed of human serum albumin and organic acid-based crosslinkers with active ester groups,” J. Bioact. Compat. Polym., vol. 24, pp. 546-559, Nov., 2009.
T. Inoue, T. Taguchi, S. Imade, N. Kumahashi, and Y. Uchio, “Effectiveness and biocompatibility of a novel biological adhesive application for repair of meniscal tear on the avascular zone,” Sci. Technol. Adv. Mater., vol. 13, pp. 064219-064224, Dec., 2012.
J. Jin, S. I. Jeong, Y. M. Shin K. S. Lim, H. S. Shin, Y. M. Lee, H. C. Koh, and K. S. Kim, “Transplantation of mesenchymal stem cells within a poly(lactide-co-????-caprolactone) scaffold improves cardiac function in a rat myocardial infarction model,” Eur. J. Heart Fail., vol. 11, no. 2, pp. 147–153, Feb., 2009.
K. Inthanon, D. Daranarong, P. Techaikool, W. Punyodom, V. Khaniyao, A. M. Bernstein, and W. Wongkham, “Biocompatibility Assessment of PLCL-Sericin Copolymer Membranes Using Wharton’s Jelly Mesenchymal Stem Cells,” Stem Cells Int., vol. 2016, pp. 1-16, 2016.
Z. Y. Wang, Y. M. Zhao, F. Wang, and J. Wang, “Syntheses of poly (lactic acid-co-glycolic acid) serial biodegradable polymer materials via direct melt polycondensation and their characterization,” J. Appl. Polym. Sci., vol. 99, pp. 244-252, Jan., 2006.
Y. Marois, Z. Zhang, M. Vert, X. Deng, R. Lenz, and R. Guidoin, “Mechanism and rate of degradation of poly hydroxy octanoate films in aqueous media: a long-term in vitro study,” J. Biomed. Mater. Res., vol. 49, pp. 216-224, Feb., 2000.
M. R. Green, and J. Sambrook, “Molecular Cloning: A Laboratory Manual,” 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, vol. 3, appendix B.12, 1989.
J. Yang, A. R. Webb, S. J. Pickerill, G. Hageman, and G. A. Ameer, “Synthesis and evaluation of poly(diol citrate) biodegradable elastomers,” Biomaterials, vol. 27, pp. 1889–1898, March, 2006.
D. S. Katti, S. Lakshmi, R. Langer, and C. T. Laurencin, “Toxicity, biodegradation and elimination of polyanhydrides,” Adv. Drug Deliv. Rev., vol. 54, pp. 933–961, Oct., 2002.
J. P. Bruggeman, B. J. D. Bruin, C. J. Bettinger, and R. Langer, “Biodegradable poly (polyol sebacate) polymers,” Biomaterials, vol. 29, pp. 4726–4735, Dec., 2008.
X. Li, X. Deng, M. Yuan, C. Xiong, Z. Huang, Y. Zhang, and W. Jia, “In vitro degradation and release profiles of poly-DL lactide-poly (ethylene glycol) microspheres with entrapped proteins,” J. Appl. Polym. Sci., vol. 78, pp. 140–148, Oct., 2000.
L. K. Fung, M. Shin, B. Tyler, H. Brem, and W. M. Saltzman, “Chemotherapeutic drugs released from polymers: distribution of 1, 3-bis(2-chloroethyl)-l-nitrosourea in the rat brain,” Pharm. Res., vol. 13, no. 5, pp. 671–682, May, 1996.
Downloads
Published
Issue
Section
How to Cite
License
Copyright (c) 2016 Athira K Sunil, Sarkar K, Kaushik Chatterjee
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Click here for more information on Copyright policy
Click here for more information on Licensing policy