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Abstract

A closure relation expresses the fourth order orientation tensor as a function of the second order
one. Two well-known closure relations, the hybrid closure and the maximum entropy closure, are
compared in the case of a rotation symmetric orientation distribution function. The maximum
entropy closure predicts a positive fourth order parameter in the whole range of the second order
parameter, whereas the hybrid closure results in negative fourth order parameters for small values
of the second order one. For the maximum entropy closure quadratic fit polynomials are presented.
For a general distribution without rotation symmetry, the expression for the entropy is exploited
to derive an explicit form for the maximum entropy distribution. Lowest order approximation of
this distribution function leads to simple closure forms for the fourth order alignment tensor and
also for higher order alignment tensors.
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1 Introduction

Fiber reinforced materials become more and more important [1, 2] in many fields of application:
In civil engineering short steel fibers are applied to improve the mechanical properties of concrete
[3, 4]. Carbon fibers or glass fibers are introduced into polymers [5]. The mechanical (and eventually
electrical) properties of a fiber-polymer composite depend on the orientational order of the fibers. In
the case of concrete a uniform distribution of fiber orientations is often desirable. In other applications,
a high elastic modulus in one direction or an electrically conducting polymer require more or less
parallel orientation of the fibers. Therefore, the question of influencing the fiber orientation during the
production process of a composite is of great technical interest. A reorientation of fibers is practically
possible as long as the main component is in a fluid state. This is the case in fresh concrete or in a
molten polymer.

Suspensions of (rigid) fibers in a low molar mass solvent play a role in the production process
of most fiber composite materials. Usually, the suspension is flowing during the production process.
Examples are the spinning process of carbon or glass fiber reinforced polymers or the filling of fresh
fiber concrete into a formwork. During the flow process the fibers are reoriented, and the distribution
of the (rigid) fiber orientations becomes anisotropic. After hardening, the fiber orientations are frozen.
The material properties, like elastic modulus, heat conductivity and others are anisotropic, depending
on the fiber orientation distribution. It is important to predict the influence of the flow field on the
fiber orientation and consequently on the material properties.

Orientation and alignment tensors have been introduced to account for the orientational order in
fiber suspensions [6, 7], liquid crystals, ferrofluids and other materials consisting of elongated particles.
In all these examples the dynamics of the orientation tensor or the alignment tensor is relevant. For
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Figure 1: Orientation distribution function in case of isotropic particle orientations and in case of
anisotropic particle orientations.

example, in moldflow of fiber composite materials the fibers are reorienting during the flow process
of the suspension, thus determining the properties of the resulting composite. If the dynamics of the
orientation or alignment tensor is derived from an orientation distribution function, in the differential
equation for the lowest order tensor there is always involved a higher order tensor, which has to be
eliminated by a closure relation. The predicted orientation tensor distribution in a flowing suspension
- and consequently the properties of the resulting composite - depend essentially on the closure relation
[8, 9, 10, 11].

1.1 Orientation distribution and orientation tensors

The orientations of the fiber particles may be described by an orientation distribution (ODF) on
the unit sphere. Imagine all particles of the volume element attached with their centers of mass to
the center of the unit sphere. The end points of the particles (scaled to length two) give rise to a
distribution function on the unit sphere.

The orientation distribution is the probability density of finding a particle of the particular orien-
tation n, where n is a unit vector. It is homogeneous if all particle orientations are equally probable
(see the first case in figure 1. This is the isotropic case. If there exists a preferred orientation, the
ODF is concentrated more or less around that orientation (anisotropic case, second example in figure
1).

Since the whole distribution function is not easily measurable, the moments of the distribution
function are introduced. They are macroscopic tensorial quantities. The symmetric tensors

A(k)(x, t) :=

∫
S2

f(x, t,n) n . . .n︸ ︷︷ ︸
k times

d2n (1)

are denoted as orientation tensors. The set of infinitely many orientation tensors contains the same
information as the ODF, but practically, only the lowest non-trivial moment, the second order tensor
A(2)(x, t) =: A :=

∫
S2 f(x, t,n)nnd

2n, is taken into account.
The alignment tensors are defined as the traceless part of the orientation tensors:

a(k)(x, t) :=

∫
S2

f(x, t,n) n . . .n︸ ︷︷ ︸
k times

d2n, (2)

where denotes the symmetric traceless part of a tensor. Contraction over any pair of indices of
the alignment tensors is zero. They are a direct measure of orientational order, because all alignment
tensors are zero in the isotropic phase, which is not the case for the orientation tensors. Different
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states of orientational order may be distinguished in terms of the second order orientation tensor or in
terms of the alignment tensor. If the orientations are isotropic, the orientation tensor is proportional
to the unit tensor, whereas for anisotropic distributions, it has a traceless part. If the orientation

distribution is rotation symmetric, the alignment tensor is of the special form a(2) = S(2) dd with a
scalar order parameter S(2) and unit vector d.

In the context of liquid crystals the alignment tensors are considered usually, because they are a
direct measure of the orientational order and of the anisotropic material properties. In the context of
fiber suspensions, the orientation tensors are more familiar [6]. The quadratic closure relation has a
very simple form in terms of the orientation tensors.

1.2 Relation between the alignment and orientation tensors

In the following, vector and tensor components refer to a Cartesian coordinate system with summation
convention applied.

As the alignment tensors are defined as the traceless part of the orientation tensors, they fulfill
the relations in components [12, 13]

a
(2)
ij = A

(2)
ij − 1

3
δij (3)

a
(4)
ijkl = A

(4)
ijkl −

1

7

(
δijA

(4)
mmkl + δikA

(4)
mmjl + δilA

(4)
mmjk + δjkA

(4)
mmil+

+ δjlA
(4)
mmik + δkl A

(4)
mmij︸ ︷︷ ︸

=A
(2)
ij

+
1

35
(δijδkl + δikδjl + δilδjk)

= A
(4)
ijkl −

1

7

(
δijA

(2)
kl + δikA

(2)
jl + δilA

(2)
jk + δjkA

(2)
il +

+ δjlA
(2)
ik + δklA

(2)
ij

)
+

1

35
(δijδkl + δikδjl + δilδjk) (4)

For simplicity, we will apply the short notation for the second order tensors a := a(2) and A :=
A(2).

1.3 Expansion of the orientation distribution function

The traceless tensors nn fulfill an orthogonality relation when integrated over the unit sphere [14, 13]:

1

4π

∫
S2

nµ1 . . . nµk︸ ︷︷ ︸
k times

nν1 . . . nνl︸ ︷︷ ︸
l times

d2n = δkl
l!

(2l + 1)!!
∆µ1...µl,ν1...νl, (5)

where ∆µ1...µl,ν1...νl is the projector on the traceless part of a tensor and m!! = m(m − 2)(m −
4) . . . 1,m ∈ N , odd. Especially, the integral is zero, if the order of the tensors is different (k ̸= l).
Consequently, the alignment tensors appear as the coefficients in the expansion of the ODF with
respect to the variable n:

f(x, t,n) =
1

4π

(
1 +

∑
leven

(2l + 1)!!

l!
aµ1...µl(x, t) nµ1 . . . nµl

)
. (6)
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1.4 Dynamics of the orientation tensor

The equation of motion for the orientation tensors or for the alignment tensors results from the
equation of motion for the orientation distribution function. There are many examples for a derivation
in the literature [15, 16, 17, 18, 19, 7].

For fiber suspensions, a widely used equation of motion for the second order orientation tensor is
the Folgar-Tucker equation [19]

dA(2)

dt
+

1

2

(
ω ·A(2) −A(2) · ω

)
=

=
1

2
λ
(
(∇v)

(sym) ·A(2) +A(2) · (∇v)
(sym) − 2(∇v) : A(4)

)
+

+2D
(
δ − 3A(2)

)
. (7)

δ is the unit tensor, and ω is the antisymmetric part of the velocity gradient. The left hand
side of this equation is the co-rotating time derivative of the orientation tensor - the time derivative
of an observer moving and rotating with the flow field. The terms in the second line are due to
the reorienting effect of the flow field (the velocity gradient) and due to the influence of the fluid
component and neighboring fibers. D and λ are material parameters, λ depending on the ratio of
diameter to length of the fibers with λ = 1 for infinitely long fibers.

In the Folgar-Tucker equation, as well as in other examples of differential equations for the second
moment, the fourth order orientation tensor occurs, and it has to be eliminated by a closure relation.
The closure relation expresses the fourth order tensor in terms of the second order one.

2 Closure relations

A simple and widely used closure relation is the quadratic closure [20]

A(4) = A(2)A(2) . (8)

Another type of closure relation discussed in the literature is the linear closure, where the fourth
order orientation tensor is expressed in terms linear in the second order tensor and the unit tensor,
symmetric in any pair of indices and fulfilling the relation Aijll = Aij see f.i. [21, 22]. In three
dimensions it is of the form (in Cartesian components):

A
(4)
ijkl = − 1

35
(δijδkl + δikδjl + δilδjk) +

+
1

7
(δijAkl +Aijδkl +Aikδjl +Ajlδik +Ailδjk +Ajkδil) (9)

Equation (4) shows, that the linear closure (9) is equivalent to the assumption a(4) = 0.
The quadratic closure is exact in the limiting case of perfect parallel alignment of the particles,

whereas the linear closure becomes exact in the limit of an isotropic distribution of fiber orientations.
The hybrid closure is the convex combination of the linear and the quadratic closure [7], thus

interpolating between the two closure forms

AAA
(4)
hybrid = f AAA

(4)
quadratic + (1− f) AAA

(4)
linear. (10)

with a scalar factor f depending on the shear rate. The quadratic and linear closure are special cases
of the hybrid closure, setting f = 1 or f = 0, respectively. Therefore, we will treat the hybrid closure
in section 3.2 and derive the other closure forms as special cases.
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For a comparison of different closure approximations with respect to alignment predictions of
a flowing fiber suspension, see f.i. [23] and for an overview over closure relations discussed in the
literature see [24, 25, 26, 27]. The Reduce Strain Closure (RSC) model requires the determination of
fit parameters from experimental data (see f.i. [27]). The choice of the closure relation is a crucial
point in the simulation of the orientation tensor in flowing fiber suspensions (see f.i. for comparison
[9, 11]). The viscosity of the suspension and the elasticity tensor show both significant flow-induced
anisotropies as well as a strong dependence on the closure relation [28]. In a recent work [29], the
orientation distribution function has been reconstructed in a certain class from the second-order
orientation tensors obtained from injection molding simulations. Based on this ODF, a new closure
approximation is developed.

The elastic modulus of the resulting fiber composite depends on the fourth order orientation
tensor. Calculating the elasticity tensor or the stiffness tensor of the composite from a simulation of
the second order orientation tensor requires again a closure relation. For planar orientation states, as
they occur in sheet molding compounds [30], a minimal invariant set of structurally differing planar
fourth-order fiber orientation tensors and orientation distribution functions derived from them have
been constructed [30, 31].

2.1 A closure relation derived from entropy maximization

The idea is, that the second order orientation tensor or alignment tensor is the only moment of
the orientation distribution function, which is measured. Apart from the constraint on the second
order tensor, the ODF is determined as the most probable distribution function, using no additional
information. This is the distribution function maximizing the statistical entropy [32, 33].

We will sketch here only very shortly the entropy maximization. A detailed derivation with the
alignment tensor as variable is given in [34, 35].

In order to introduce an entropy, it is necessary to go to the microscopic level of single particles with
positions, velocities, orientations and angular velocities. On this level, a phase space distribution is
defined, and the continuum mechanical fields, like mass density, energy density and orientation tensors
are defined as averages with this phase space distribution function fΓ. The entropy density is defined
as

η(x, t) = −K

∫
Γ

N∑
α=1

fΓ(Γ̄, t) ln fΓ(Γ̄, t)δ(x− xα)dΓ̄ (11)

with Boltzmann constant K, number of particles N, the δ-distribution and integral over the phase
space.

This entropy is maximized with respect to the phase space distribution function under the con-
straints, that the field quantities of mass density, energy density, momentum density, angular mo-
mentum density and second order alignment tensor have correct values, when calculated with this
distribution function. A phase space distribution of exponential form results. The orientation distri-
bution function (ODF), introduced previously, is derived by summing up over all particles inside the
volume element. The ODF derived by entropy maximization is of the form

f(x, t,n) =
exp (−Λ(x, t) : nn)∫

S2 exp (−Λ(x, t) : nn) d2n
=

exp
(
−Λ(x, t) : nn

)∫
S2 exp

(
−Λ(x, t) : nn

)
d2n

. (12)

The parameter Λ is determined by the second order alignment tensor, and all higher order alignment
tensors may be calculated with this distribution function.
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3 The uniaxial case

An important special case is a rotation symmetric distribution function with rotation symmetry axis
d. In the case of liquid crystals a uniaxial distribution function is often observed in the absence of
electromagnetic fields. In this case, the alignment tensors may be expressed in terms of the unit vector
d and scalar parameters:

a = S(2) dd (13)

S(2) is denoted as scalar order parameter, and

a(4) = S(4) dddd (14)

In the uniaxial case, the closure problem reduces to calculating the fourth order parameter S(4)

in terms of the second order parameter S(2).

3.1 Maximum entropy closure in the uniaxial case

In the uniaxial case the orientation distribution function has a rotational symmetry around an axis
d. For symmetry reasons it is of the form

f(x, t,n) =
exp{−Λ(x, t) : nn}∫

S2 exp{−Λ(x, t) : nnd2n}
=

=
exp{−l(x, t)d(x, t)d(x, t) : nn}∫

S2 exp{−l(x, t)d(x, t)d(x, t) : nnd2n}
. (15)

l is a scalar parameter. The scalar order parameters S(2) and S(4) depend on the parameter l. The
dependence has been expressed in terms of the error-function [35]. It is not possible to eliminate l
analytically from these relations, but a parametric plot shows S(4) as a function of S(2), see right hand
side of figure 2 from [35].

3.2 Quadratic, linear and hybrid closure in the uniaxial case

In this subsection we derive the closure relation for the scalar order parameters in the case of the
well known closure relations for the alignment tensor. These closure relations will be compared to the
maximum entropy closure in the uniaxial case.

The scalar order parameters S(2) and S(4) are defined in terms of the alignment tensors. However,

linear, quadratic and hybrid closure are formulated for the orientation tensors. Because a = A and

a(4) = A(4) , we have for the orientation tensors

A = S(2) dd +
1

3
δ (16)

and consequently

A .. dd =
2

3
S(2) +

1

3
. (17)

The fourth order alignment tensor

a(4) = S(4) dddd (18)
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reads in components

a
(4)
ijkl = S(4)

(
didjdkdl −

1

7
(δijdkdl + δikdjdl + δildjdk+

+ δjkdidl + δjldidk + δkldidj) +
1

35
(δijδkl + δikδjl + δilδjk)

)
(19)

The scalar order parameters are obtained by contractions with the unit vector d.
From equation (19) it follows

a(4) .. .. dddd =
8

35
S(4). (20)

On the other hand with the closure relations (8), (9), (10) and equations (4) and (17) we have

a(4) .. .. dddd = A(4) .. .. dddd− 6

7
A .. dd+

3

35

= (1− f)

(
− 3

35
+

6

7
A .. dd

)
+ f (A .. dd)2 − 6

7
A .. dd+

3

35
=

= f

(
4

9
S(2)2 − 8

63
S(2) − 4

45

)
, (21)

Equations (20) and (21) together result in the closure relation for the scalar order parameter:

S(4) = f

(
35

18
S(2)2 − 5

9
S(2) − 7

18

)
(22)

In the special case of the linear closure f = 0, the fourth order parameter S(4) = 0. The quadratic
closure f = 1 results in

S(4) =
35

18
S(2)2 − 5

9
S(2) − 7

18
(23)

The result is shown for f = 1 on the left hand side of figure 2 compared to the maximum
entropy closure relation on the right hand side. f = 1 corresponds to the quadratic closure, but
the factor f results only in a scaling of the graph, not altering the graph qualitatively. We observe,
that the maximum entropy closure results in S(4) > 0 for any S(2) > 0 in contrast to the quadratic
closure. S(4) > 0 means, that the fourth order alignment tensor term is a correction term, making
the distribution function stronger concentrated around the preferred axis.

3.3 Approximation of the maximum entropy closure by second order polynomials

The maximum entropy closure relation in the uniaxial case may be approximated by a second order
polynomial. In figure 3 it is shown a piecewise approximation with second order polynomials in
subintervals of length 0.2. The fit polynomials are

S(4) = 0, 729 S(2)2 − 0, 021 S(2) , S(2) ∈ [0; 0, 2] (24)

S(4) = 0, 833 S(2)2 − 0, 075 S(2) + 0, 007 , S(2) ∈ [0, 2; 0, 4] (25)

S(4) = 1, 042 S(2)2 − 0, 417 S(2) + 0, 11 , S(2) ∈ [0, 4; 0, 6] (26)

S(4) = 1, 312 S(2)2 − 0, 607 S(2) + 0, 127 , S(2) ∈ [0, 6; 0, 8] (27)

S(4) = 3, 062 S(2)2 − 3, 057 S(2) + 0, 967 , S(2) ∈ [0, 8; 1] . (28)
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(a) (b)

Figure 2: Quadratic closure on the left hand side and maximum entropy closure relation on the right
hand side, (maximum entropy closure taken from [35]).

Figure 3: Second order fit polynomials to the maximum entropy closure.
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A quadratic fit polynomial for the whole range of second order parameter is

S(4) = 1, 365 S(2)2 − 0, 393 S(2) , S(2) ∈ [0; 1] . (29)

The piecewise approximation as well as the approximation in the whole range are not of the form of
the quadratic closure, equation (23) and also not of the form of the hybrid closure. In the case of a
piecewise approximation, the coefficients depend on the range of the scalar order parameter.

4 The maximum entropy closure in the general case

The distribution function maximizing the statistical entropy under constraints is [35]:

f(x, t,n) =
e−Λ(x,t): nn∫

S2 e−Λ(x,t): nn d2n
=:

e−Λ(x,t): nn

Z
. (30)

We obtain for the alignment tensor:

a(x, t) =

∫
S2

nn
e−Λ(x,t): nn

Z
=

1

Z

∫
S2

− ∂

∂Λ
e−Λ: nn d2n

= − 1

Z

∂

∂Λ

∫
S2

e−Λ: nn d2n = − 1

Z

∂Z

∂Λ
(31)

This is an implicit relation between the alignment tensor and the parameter Λ. We will use the
entropy density for the identification of Λ.

The entropy density η is introduced on the microscopic level in terms of a statistical distribution
function. It has been shown [35], that the orientation dependent part of the statistical entropy can
be expressed in terms of the mesoscopic distribution function f(x, t,n) in the form:

η(x, t) =

∫
S2

f(x, t,n) ln f(x, t,n)d2n . (32)

With the distribution function eq. (30) this leads to:

η(x, t) =

∫
S2

−Λ(x, t) : nn f(x, t,n)d2n− lnZ = −Λ : a− lnZ . (33)

The time derivative of the entropy density is calculated as:

η̇ = −Λ̇ : a−Λ : ȧ− Ż

Z
= −Λ : ȧ (34)

because

Ż =
d

dt

(∫
S2

e−Λ(x,t): nn d2n

)
= −Λ̇ :

∫
S2

e−Λ(x,t): nn nn d2n =

= −Λ̇ : aZ . (35)

On the other hand, the entropy density is a constitutive function, depending on the alignment
tensor a. Therefore, we have for the time derivative of the orientation dependent entropy density:

η̇(a(x, t)) =
∂η

∂a
: ȧ . (36)
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Comparing the time derivatives of the entropy density, equations (34) and (36), leads to the identifi-
cation of the parameter Λ in the distribution function:

Λ = − ∂η

∂a
. (37)

We have identified the maximum entropy distribution function to be:

f(x, t,n) =
e

∂η
∂a (x,t): nn∫

S2 e
∂η
∂a (x,t): nn d2n

. (38)

With this distribution function alignment tensors and orientation tensors of any order can be calcu-
lated.

4.1 Lowest order approximation

The entropy density is supposed to be a continuously differentiable function of the alignment tensor
(with trace(a) = 0). If the power series

η(a) = η0 +
1

2
η2trace(a · a) + 1

6
η3trace(a · a · a) +O(a4) (39)

is truncated after the second order term, it results

∂η

∂a
= η2a. (40)

Inserting the series expansion of the distribution function for the calculation of the fourth order
alignment tensor

a(4) =

∫
S2

f(x, t,n) nnnn d2n =

∫
S2 e

η2a(x,t): nn nnnn d2n∫
S2 eη2a(x,t): nn d2n

=

=

∫
S2

∑∞
i=0

(
1
i!(η2a(x, t) : nn )i

)
nnnn d2n∫

S2

∑∞
i=0

(
1
i!(η2a(x, t) : nn )i

)
d2n

(41)

results in integrals of the form [14, 13] (with the projector ∆(4) on the symmetric traceless part
of a fourth order tensor): ∫

S2

1d2n = 4π (42)∫
S2

nn d2n = 0 (43)∫
S2

nnnn d2n = 0 (44)∫
S2

nn nnnn d2n = 0 (45)∫
S2

nn nn nnnn d2n = 4π
4!

9!!
∆(4) = 4π

8

315
∆(4) (46)

and higher orders. Keeping only the lowest order non-zero terms in equation (41) results in
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a(4) =
8

315

η22
2
∆(4) .. ..aa =

4

315
η22 aa , (47)

i.e. in a closure relation of the form of a quadratic closure. A term linear in a does not appear
due to equation (45). However, higher order terms have been neglected in the nominator and in the
denominator. The closure relation (47) fulfills the symmetry condition (a(4) is symmetric with respect

to any pair of indices) and the constraint a
(4)
ijll = 0.

Remark on the sixth order alignment tensor in the lowest order approximation
Because ∫

S2

nnnnnn d2n = 0 (48)∫
S2

nn nnnnnn d2n = 0 (49)∫
S2

nn nn nnnnnn d2n = 0 (50)

the lowest order approximation leads to a closure form

a(6) ∝ aaa (51)

without lower order terms in the second order alignment tensor.

5 Conclusions

In the uniaxial case the closure problem reduces to a relation between the scalar order parameters
of fourth and second order. An implicit relation between these order parameters has been derived
previously from the orientation distribution function, which maximizes the statistical entropy. This
closure relation has been compared here to the quadratic, linear and hybrid closure. One important
difference is the sign of the fourth order parameter, which is always positive for the maximum entropy
closure. In case of the quadratic and hybrid closure the fourth order parameter has negative sign for
small values and positive sign for larger values of the second order parameter. Negative sign means,
that the fourth order correction term in the expansion of the ODF decreases the degree of orientational
order. Second order fit polynomials for the maximum entropy closure have been presented and could
be used in numerical solutions of the orientation tensor dynamics, where a closure relation is always
necessary. In the general case without rotation symmetry of the orientation distribution function, the
parameter Λ in the maximum entropy distribution has been identified as the derivative of the entropy
density with respect to the second order alignment tensor. In the lowest order approximation this
derivative is proportional to the alignment tensor. Expansion of the exponential function leads to an
approximation of the fourth order alignment tensor proportional to the square of the second order
alignment tensor without linear terms, i.e. a quadratic closure form. The same way approximations for
the higher order alignment tensors may be calculated. The result for the sixth order alignment tensor
is proportional to aaa without lower order terms. These closure relations may also be expressed in
terms of the non-traceless orientation tensors, but do not have such a simple form then.
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[27] Ahmad Al-Qudsi, Hakan Çelik, Jonas Neuhaus, and Christian Hopmann. A comparative study
between fiber orientation closure approximations and a new orthotropic closure. Polymer Com-
posites, 43, 07 2022.
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