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A B S T R A C T  7 

In this study we propose a calibration ratio estimator and a calibration separate ratio-product estimator 8 
of population mean of study variable under stratified sampling using the median of auxiliary variable. 9 
The calibration estimator used calibrated weight determined to minimize a chi-square distance measure 10 
subject to a set of constraint related to the auxiliary variable in other to increase precision of the 11 
estimators. The median of the auxiliary variable was used in defining the calibration constraints. The 12 
variances of the proposed estimators were also obtained. An empirical study to ascertain the 13 
performance of these estimators using simulated data under underlying distribution assumption of 14 
Student-T distribution, Cauchy distribution, Lognormal distribution, and Standard normal distribution 15 
with varying sample sizes of 10%, 20%, and 25% were carried out. The result of simulation reveals that 16 
when the underlying distribution is Student-T, at 10% sample size, the efficiency performance of the 17 
proposed calibration separate ratio-product estimator is better than other competing estimators. As the 18 
sample size is increased to 20% and 25%, the efficiency performance of the existing stratified ratio 19 
estimator and existing calibration ratio estimator respectively become better than the other estimators. 20 
Under the skewed distributions (Cauchy and Lognormal) and the standard normal distribution, it is 21 
observed that the proposed calibration ratio estimator is better than other competing estimators in 22 
terms of efficiency, consistency and reliability. The result also reveals that under the lognormal 23 
distribution, the conventional stratified ratio estimator and the conventional calibration ratio estimator 24 
give the same result. 25 

Keywords: Calibration Estimation, Stratified Sampling, Ratio Estimators 26 

1 Introduction 27 

The simplest estimator for estimating population mean of a study variable is the sample mean, obtained by 28 

using simple random sampling without replacement. If the population parameters are not known, 29 

supplementary information may be obtained from space (related area to the study variable) or from time 30 

(from previous research) and used to estimate parameters of the study variable. In survey sampling, using 31 

auxiliary information is observed to yield extensive gain in performance (better efficiency, precision, less 32 

bias etc.) over the estimators lacking such information. Auxiliary information is obtained from an auxiliary 33 

variable which is a variable having high correlation with the study. Noor-ul-Amin et al. [1]used auxiliary 34 

information in the estimation of population mean. Auxiliary variables can be either positively correlated or 35 

negatively correlated with the study variable. When the parameters of the auxiliary variable X such as 36 

Population Mean, Co-efficient of Variation, Co-efficient of Kurtosis, Co-efficient of Skewness, Median 37 

etc., are known, a number of estimators such as linear regression, ratio, and product estimators and their 38 

modifications like product-ratio estimators, exponential estimators etc., can be used for improved 39 

estimation of the population parameters of the study variable. When the auxiliary variable is positively 40 

correlated with the study variable, a ratio estimation technique is used to improve the estimators’ 41 

performance. However, when the correlation is negative, a product estimation technique is employed to 42 

improve estimators’ performance. Over the years, different researchers have used these two forms of 43 

estimators (ratio and product estimation) to improve the quality of estimation with respect to the type of 44 
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correlation existing between the auxiliary variable and the study variable. Singh et al. [2] proposed a two-45 

parameter ratio-product estimator in post stratification, and derived conditions under which the proposed 46 

estimators have smaller mean squared error than some conventional estimators. Zaman et al. [3] proposed 47 

exponential ratio estimators in the stratified two-phase sampling utilizing an auxiliary attribute.  48 

Recently, other parameters of the auxiliary variable such as the median, coefficient of skewness, coefficient 49 

of kurtosis, coefficient of correlation has been used to estimate the population parameters of the study 50 

variable. Subramani [4] suggested a median ratio-based estimator of the population mean, 𝑌̅.  51 

Calibration technique can also be used boost precision of an estimator. Calibration is commonly used when 52 

auxiliary information is available to increase the precision of estimators of population parameters. This is 53 

done by modifying the original design weights using the known population parameters, in practice 54 

population totals or population means, of the auxiliary variables. Garg et al. [5] proposed a calibration 55 

estimator of the finite population mean in stratified sampling using the median of auxiliary variable. Rai et 56 

al.[6] proposed calibration-based estimators using different distance measures under two auxiliary variables. 57 

Singh et al. [7] suggested new technique to calibrate estimators of the variance of simple mean, ratio and 58 

regression estimators under different sampling schemes. 59 

2 Research and method 60 

2.1 Notations and some existing estimators 61 

Suppose the finite population 𝑼 of 𝑁 elements 𝑼 = (𝑼𝟏, 𝑼𝟐, … , 𝑼𝑵) and consist of 𝑳 strata with 𝑵𝒉 units 62 

in the ℎ𝑡ℎ  stratum from which a simple random sample of size 𝒏𝒉 is obtained without replacement. Given 63 

that total population size 𝑵 = ∑ 𝑵𝒉
𝑳
𝒉=𝟏  and the sample size 𝒏 = ∑ 𝒏𝒉

𝑳
𝒉=𝟏 , respectively. Associated with 64 

the 𝑖𝑡ℎ element of the ℎ𝑡ℎ stratum are 𝒚𝒉𝒊 and 𝒙𝒉𝒊 with 𝒙𝒉𝒊 > 𝟎, being the covariate; where 𝒚𝒉𝒊 is the y 65 

value of the 𝑖𝑡ℎ element in stratum 𝒉 , and 𝒙𝒉𝒊 is the 𝒙 value of the 𝑖𝑡ℎ element in 𝒉, 𝒉 = 𝟏, 𝟐, … , 𝑳  and 66 

𝒊 = 𝟏, 𝟐, … , 𝑵𝒉 where y and x are the study and auxiliary variables respectively. For the ℎ𝑡ℎ stratum, let 67 

𝑾𝒉 =
𝑵𝒉

𝑵
 be the stratum weights and 𝒇𝒉 =

𝒏𝒉

𝑵𝒉
 , the sample fraction. 68 

Let the ℎ𝑡ℎ stratum means of the study variable 𝑦 and the auxiliary variable 𝑥 (𝒚̅𝒉 = ∑
𝒚𝒉𝒊

𝒏𝒉𝒊

𝑳
𝒉=𝟏 ;  𝒙𝒉 =69 

∑
𝒙𝒉𝒊

𝒏𝒉𝒊

𝑳
𝒉=𝟏 )  be the unbiased estimator of the population mean (𝒀̅𝒉 = ∑

𝒀𝒉𝒊

𝑵𝒉

𝑳
𝒉=𝟏 ;  𝑿̅𝒉 = ∑

𝑿𝒉𝒊

𝑵𝒉

𝑳
𝒉=𝟏 ) of 70 

𝒚 𝑎𝑛𝑑 𝒙 respectively, based on 𝑛ℎ observations. 71 

The Horvitz Thompson stratified sampling estimator is given as: 72 

𝒚̅𝒔𝒕(𝜶)  = ∑ 𝑾𝒉𝒚̅𝒉
𝑳
𝒉=𝟏                                  (1) 73 

Where, 𝑾𝒉 =
𝒏𝒉

𝑵𝒉
, is the stratum weight, 𝒚̅𝒉 =

𝟏

𝒏
∑ 𝒚𝒉

𝑳
𝒉=𝟏  , and the variance of 𝑦̅𝑠𝑡(𝛼) is given as 74 

𝑉(𝑦̅𝑠𝑡) = {∑ 𝑊ℎ
2 1−𝑓ℎ

𝑛ℎ

𝐿
ℎ=1 } 𝑆ℎ𝑦

2     75 

Where,  𝑆ℎ𝑦
2 =

1

𝑁ℎ−1
∑ (𝑌ℎ𝑖 − 𝑌̅ℎ)2𝑁ℎ

𝑖=1 ,  𝑓ℎ =
𝑛ℎ

𝑁ℎ
 76 

The conventional ratio type estimator in stratified sampling is given as: 77 

𝑦̅𝑠𝑡(𝛼)  = ∑ 𝑊ℎ𝑦̅ℎ𝑅ℎ       𝐿
ℎ=1                                                                                                 (2) 78 

Where,      𝑅ℎ =
𝑋̅ℎ𝑥

𝑥̅ℎ𝑥
                                                                                       79 

And the variance is  80 

𝑉(𝑦̅𝑟𝑠) = ∑ 𝑊ℎ=1
2 1−𝑓ℎ

𝑛ℎ
(𝑆ℎ𝑦

2 + 𝑅ℎ
2𝑆ℎ𝑥

2 − 2𝑅ℎ𝑆ℎ𝑥𝑦)𝐿
ℎ=1                              (3) 81 

The calibration ratio estimator under stratified sampling is given as: 82 

  𝑦̅𝑠𝑡
∗(𝛼ℎ) = ∑ 𝑊ℎ

∗𝐿
ℎ=1 𝑦̅ℎ𝑅ℎ                                                                                                  (4) 83 

Garg et al. [5] proposed a calibration estimator of the finite population mean in stratified sampling using 84 

the median of auxiliary variable as follow: 85 

http://journals.aijr.org/
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𝑦̅𝑚𝑑 = ∑ Ωℎ𝑦̅ℎ
𝐿
ℎ=1                                                                                                                 (5)  86 

Where Ωℎ  , ℎ = 1, 2, … , 𝐿 are the calibration weight obtained by minimizing the chi-square distance 87 

measure  ∑ (
Ωℎ−𝑊ℎ

𝑄ℎ𝑊ℎ
)𝐿

ℎ=1

2
, subject to the two calibration constraints: 88 

∑ Ωℎ𝑚ℎ
𝐿
ℎ=1 = ∑ 𝑊ℎ𝑀ℎ

𝐿
ℎ=1                                                                                                        (6) 89 

Where 𝑚ℎ and  𝑀ℎ are the sample and population median of auxiliary variable, respectively. 90 

The Lagrange function is defined as: 91 

𝐿 = ∑
(Ωℎ−𝑊ℎ)2

𝑊ℎ𝑄ℎ

𝑙
ℎ=1 − 2𝜆(∑ Ωℎ𝑚ℎ

𝐿
ℎ=1 − ∑ 𝑊ℎ𝑀ℎ

𝐿
ℎ=1 )                                                            (7) 92 

Where 𝜆 is the Lagrange multipliers. To determine the optimum value of Ωℎ , differentiate the Lagrange 93 

function in (7) with respect to Ωℎ and equate to zero. Thus, the calibration weight can be obtained as: 94 

Ωℎ = 𝑊ℎ + 𝜆(𝑊ℎ𝑄ℎ𝑚ℎ)                                                                                                           (8) 95 

Here 𝜆 is determined by substituting the value of Ωℎ from equation (8) to equation (6), so this leads to a 96 

calibrated weight given as: 97 

Ωℎ = 𝑊ℎ + 𝑊ℎ𝑄ℎ𝑚ℎ [
∑ 𝑊ℎ(𝑀ℎ−𝑚ℎ)𝐿

ℎ=1

∑ 𝑊ℎ
𝐿
ℎ=1 𝑄ℎ𝑚ℎ

2 ]                                                                                    (9) 98 

After substituting the value of Ωℎ from equation (9) to (5) ,we obtain the proposed calibrated estimator 99 

as: 100 

𝑦̅𝑚𝑑 = ∑ 𝑊ℎ𝑦̅ℎ
𝐿
ℎ=1 + 𝛽̂𝑚𝑑[∑ 𝑊ℎ(𝑀ℎ − 𝑚ℎ)𝐿

ℎ=1 ]                                                                      (10) 101 

Where 𝛽̂𝑚𝑑 =
∑ 𝑊ℎ𝑄ℎ𝑚ℎ𝑦̅ℎ

𝐿
ℎ=1

∑ 𝑊ℎ
𝐿
ℎ=1 𝑄ℎ𝑚ℎ

2  102 

Vishwakarma et al. [8] proposed a separate ratio-product estimator for population mean in stratified random 103 

sampling using auxiliary information as: 104 

𝑌̂̅𝑅𝑃
(𝑠)

= ∑ 𝑊ℎ𝑦̅ℎ {𝛼ℎ
𝑋̅ℎ

𝑥̅ℎ
+ (1 − 𝛼ℎ)

𝑥̅ℎ

𝑋̅ℎ
}   𝐿

ℎ=1                                                                                (11) 105 

With the variance of 𝑌̂̅𝑅𝑃
(𝑠)

 to the first order of approximation given as 106 

𝑉𝑎𝑟 (𝑌̂̅𝑅𝑃
(𝑠)

) = ∑ 𝑊ℎ
2𝛾ℎ𝑌̅ℎ

2[𝐶ℎ𝑦
2 + (1 − 2𝛼ℎ){(1 − 2𝛼ℎ) + 2𝐾ℎ}𝐶ℎ𝑥

2 ]𝐿
ℎ=1                                    (12)  107 

Motivated by [8], [9] who proposed a separate ratio-product estimator for population mean in stratified 108 

random sampling using calibration estimation theory as follow: 109 

𝑦̅𝑠𝑡
∗(𝛼ℎ) = ∑ 𝑊ℎ

∗𝐿
ℎ=1 𝑦̅ℎ𝜆                                                                                                            (13) 110 

Where the coefficient   𝜆 = {𝛼ℎ
𝑋̅ℎ

𝑥̅ℎ
+ (1 − 𝛼ℎ)

𝑥̅ℎ

𝑋̅ℎ
}  and 𝑊ℎ

∗ is the new weights called the calibration weight 111 

and are chosen such that a chi-square-type loss function of the form 112 

 ∑ (
𝑊ℎ

∗−𝑊ℎ

𝑄ℎ𝑊ℎ
)𝐿

ℎ=1

2

                                                                                                                           (14) 113 

Is minimized subject to the calibration constrain of the form  114 

∑ 𝑊ℎ
∗𝑆ℎ𝑥

2 = 𝑉(𝑋̅𝑠𝑡)  𝐿
ℎ=1                                                                                                                (15) 115 

Minimizing the loss function (14) subject to the calibration constraint (15) leads to the calibration weight 116 

for stratified sampling given by 117 

𝑊ℎ
∗ = 𝑊ℎ + (𝑉(𝑋̅𝑠𝑡) − ∑ 𝑊ℎ

∗𝑆ℎ𝑥
2𝐿

ℎ=1 )
𝑄ℎ𝑊ℎ𝑆ℎ𝑥

2

∑ 𝑄ℎ𝑊ℎ(𝑆ℎ𝑥
2 )2𝐿

ℎ=1
                                                                (16)  118 

Let 𝑊ℎ
∗2

= [𝑊ℎ + (𝑉(𝑋̅𝑠𝑡) − ∑ 𝑊ℎ
∗𝑆ℎ𝑥

2𝐿
ℎ=1 )

𝑄ℎ𝑊ℎ𝑆ℎ𝑥
2

∑ 𝑄ℎ𝑊ℎ(𝑆ℎ𝑥
2 )2𝐿

ℎ=1
]

2

  119 

And setting the turning parameter  𝑄ℎ = 𝑆ℎ𝑥
−2, then  120 

𝑊ℎ
∗2

= 𝑊ℎ
2 [

𝑉(𝑥̅𝑠𝑡)

𝑉(𝑥̅𝑠𝑡)
]

2
                                                                                                                      (17) 121 

Where  𝑉(𝑋̅𝑠𝑡) = ∑ 𝑊ℎ
2𝛾ℎ

𝐿
ℎ=1 𝑆ℎ𝑥

2   and 𝑉̂(𝑋̅𝑠𝑡) = ∑ 𝑊ℎ𝑆ℎ𝑥
2𝐿

ℎ=1   122 

Substituting (17) into (13) gives the proposed estimator of the mean as 123 

http://journals.aijr.org/
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𝑦̅𝑠𝑡
∗(𝛼ℎ) = [∑ 𝑊ℎ + (𝑉(𝑋̅𝑠𝑡) − ∑ 𝑊ℎ

∗𝑆ℎ𝑥
2𝐿

ℎ=1 )
𝑄ℎ𝑊ℎ𝑆ℎ𝑥

2

∑ 𝑄ℎ𝑊ℎ(𝑆ℎ𝑥
2 )2𝐿

ℎ=1

𝐿
ℎ=1 ] 𝑦̅ℎ𝜆                         (18) 124 

The MSE of the estimator 𝑦̅𝑠𝑡
∗(𝛼ℎ) is given as  125 

𝑀𝑆𝐸(𝑦̅𝑠𝑡
∗(𝛼ℎ)) = 𝜆2 ∑ 𝑊ℎ

∗2
𝛾ℎ𝑆ℎ𝑦

2 + 𝑌̅2(𝜆 − 1)2𝐿
ℎ=1                                                    (19) 126 

Writing (19) with respect to (17) gives 127 

𝑀𝑆𝐸(𝑦̅𝑠𝑡
∗(𝛼ℎ)) = 𝜆2 [

𝑉(𝑥̅𝑠𝑡)

𝑉(𝑥̅𝑠𝑡)
]

2
∑ 𝑊ℎ

2𝛾ℎ𝑆ℎ𝑦
2 + 𝑌̅2(𝜆 − 1)2𝐿

ℎ=1                                        (20) 128 

2.2 The proposed calibration ratio type estimators under one constraint: 129 

In this section we present some calibration ratio type estimators under one constraint using the chi-square 130 

distance measures 131 

Theorem 1  132 

Given the ratio estimator as 133 

𝑦̅𝑠𝑡 = ∑ 𝑊ℎ𝑦̅ℎ𝑅ℎ 𝐿
ℎ=1   134 

Where 𝑅ℎ =
𝑀ℎ𝑥

𝑚ℎ𝑥
 135 

A calibration ratio type estimator 𝑦̅𝑠𝑡𝑚
∗  for population mean 𝑌̅ given as 136 

𝑦̅𝑠𝑡𝑚
∗ = ∑ [𝑊ℎ +

(𝑄ℎ𝑊ℎ𝑚ℎ𝑥) ∑ 𝑊ℎ(𝑀ℎ𝑥−𝑚ℎ𝑥)𝐿
ℎ=1

∑ 𝑊ℎ𝑄ℎ𝑚ℎ𝑥
2𝐿

ℎ=1
]𝐿

ℎ=1 𝑦̅ℎ𝑅ℎ              137 

Is proposed with variance  138 

𝑉(𝑦̅𝑠𝑡𝑚
∗ ) = (𝑅ℎ)2 ∑ [𝑊ℎ +

(𝑄ℎ𝑊ℎ𝑚ℎ𝑥) ∑ 𝑊ℎ(𝑀ℎ𝑥−𝑚ℎ𝑥)𝐿
ℎ=1

∑ 𝑊ℎ𝑄ℎ𝑚ℎ𝑥
2𝐿

ℎ=1
]

2

𝜃𝑛ℎ𝑆𝑦ℎ
2 + 𝑌̅2(𝑅ℎ

−1 − 1)
2𝐿

ℎ=1    139 

Proof: 140 

Given the ratio estimator  141 

𝑦̅𝑠𝑡 = ∑ 𝑊ℎ𝑦̅ℎ𝑅ℎ 𝐿
ℎ=1   142 

Define a calibration estimator of the form  143 

𝑦̅𝑠𝑡𝑚
∗ = ∑ 𝑊ℎ

∗𝑦̅ℎ𝑅ℎ 𝐿
ℎ=1                                                                                                 (21) 144 

Where the coefficient 𝑅ℎ =
𝑀ℎ𝑥

𝑚ℎ𝑥
   and 𝑊ℎ

∗ is the new weight chosen such that a chi-square type loss function 145 

∑ (
𝑊ℎ

∗−𝑊ℎ

𝑄ℎ𝑊ℎ
)𝐿

ℎ=1

2

                                                                                                                              (22)  146 

is minimized subject to a calibration constraint 147 

∑ 𝑊ℎ
∗𝑚ℎ𝑥 = ∑ 𝑊ℎ𝑀ℎ𝑥

𝐿
ℎ=1           𝐿

ℎ=1                                                                                      (23)  148 

The Lagrange’s function, using Calibration constraints and chi-square distance measure is  149 

∆= ∑ (
𝑊ℎ

∗−𝑊ℎ

𝑄ℎ𝑊ℎ
)

2

− 2𝜆1(∑ 𝑊ℎ
∗𝑚ℎ𝑥 − ∑ 𝑊ℎ𝑀ℎ𝑥

𝐿
ℎ=1

𝐿
ℎ=1 )𝐿

ℎ=1                                                            (24) 150 

Differentiating (24) with respect to 𝑊ℎ
∗, setting result equal to zero and solving for 𝑊ℎ

∗ 151 

𝑊ℎ
∗ = 𝑊ℎ + 𝜆1𝑚ℎ𝑥𝑄ℎ𝑊ℎ                                                                                                                  (25)  152 

Putting equation (25) into (23) and solving for 𝜆1 gives 153 

𝜆1 =
∑ 𝑊ℎ(𝑀ℎ𝑥−𝑚ℎ𝑥)𝐿

ℎ=1

∑ 𝑊ℎ𝑄ℎ𝑚ℎ𝑥
2𝐿

ℎ=1
                                                                                                                      (26)   154 

Substituting for 𝜆1 from equation (26) in (25) gives the calibration weight for stratified sampling: 155 

𝑊ℎ
∗ = 𝑊ℎ +

(𝑄ℎ𝑊ℎ𝑚ℎ𝑥) ∑ 𝑊ℎ(𝑀ℎ𝑥−𝑚ℎ𝑥)𝐿
ℎ=1

∑ 𝑊ℎ𝑄ℎ𝑚ℎ𝑥
2𝐿

ℎ=1
                                                                                   2      (27)   156 

Substituting for 𝑊ℎ
∗ from equation (27) into (21) gives the population estimator 157 

𝑦̅𝑠𝑡𝑚
∗ = ∑ [𝑊ℎ +

(𝑄ℎ𝑊ℎ𝑚ℎ𝑥) ∑ 𝑊ℎ(𝑀ℎ𝑥−𝑚ℎ𝑥)𝐿
ℎ=1

∑ 𝑊ℎ𝑄ℎ𝑚ℎ𝑥
2𝐿

ℎ=1
]𝐿

ℎ=1 𝑦̅ℎ𝑅ℎ                                                                  (28) 158 

By substituting the turning parameter  𝑄ℎ = 𝑀ℎ𝑥
−1 we have the calibration ratio type estimator as 159 
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𝑦̅𝑠𝑡𝑚
∗ = ∑ [𝑊ℎ +

(𝑀ℎ𝑥
−1𝑊ℎ𝑚ℎ𝑥) ∑ 𝑊ℎ(𝑀ℎ𝑥−𝑚ℎ𝑥)𝐿

ℎ=1

∑ 𝑊ℎ𝑀ℎ𝑥
−1𝑚ℎ𝑥

2𝐿
ℎ=1

]𝐿
ℎ=1 𝑦̅ℎ𝑅ℎ                                                               (29) 160 

2.3 The Variance of the proposed estimator calibration estimator  161 

The variance of the calibration ratio type estimator 𝑦̅𝑠𝑡𝑚
∗  for population mean 𝑌̅ using median as auxiliary 162 

variable is defined as 163 

 𝑉(𝑦̅𝑠𝑡𝑚
∗ ) = (𝑦̅𝑠𝑡𝑚

∗ − 𝑌̅)2  164 

𝑦̅𝑠𝑡𝑚
∗ − 𝑌̅ = ∑ 𝑊ℎ

∗𝑦̅ℎ𝑅ℎ
𝐿
ℎ=1 − 𝑌̅                                                                                                      (30) 165 

Squaring both sides of equation (30) and taking expectation gives 166 

𝐸(𝑦̅𝑠𝑡𝑚
∗ − 𝑌̅)2 = [∑ 𝑊ℎ

∗𝑦̅ℎ𝑅ℎ
𝐿
ℎ=1 − 𝑌̅]

2
                                                                                        (31) 167 

𝐸(𝑦̅𝑠𝑡𝑚
∗ − 𝑌̅)2 = 𝐸(∑ 𝑊ℎ

∗𝑦̅ℎ𝑅ℎ
𝐿
ℎ=1 )

2
− 2𝑅ℎ𝑌̅𝐸(∑ 𝑊ℎ

∗𝑦̅ℎ
𝐿
ℎ=1 ) + 𝑌̅2                                           (32)  168 

= 𝑣𝑎𝑟(∑ 𝑊ℎ
∗𝑦̅ℎ𝑅ℎ

𝐿
ℎ=1 ) + [𝐸(∑ 𝑊ℎ

∗𝑦̅ℎ𝑅ℎ
𝐿
ℎ=1 )]

2
− 2𝜆𝑅ℎ𝐸(∑ 𝑊ℎ

∗𝑦̅ℎ
𝐿
ℎ=1 ) + 𝑌̅2  169 

Where         𝐸(∑ 𝑊ℎ
∗𝑦̅ℎ

𝐿
ℎ=1 )

2
= 𝑣𝑎𝑟(∑ 𝑊ℎ

∗𝑦̅ℎ𝑅ℎ
𝐿
ℎ=1 ) + [𝐸(∑ 𝑊ℎ

∗𝑦̅ℎ𝑅ℎ
𝐿
ℎ=1 )]

2
 170 

= (𝑅ℎ)2𝑣𝑎𝑟(∑ 𝑊ℎ
∗𝐿

ℎ=1 𝑦̅ℎ) + (𝑅ℎ)2𝐸(∑ 𝑊ℎ
∗𝑦̅ℎ

𝐿
ℎ=1 )

2
− 2𝑅ℎ𝑌̅𝐸(∑ 𝑊ℎ

∗𝑦̅ℎ
𝐿
ℎ=1 ) + 𝑌̅2  171 

= (𝑅ℎ)2𝑣𝑎𝑟(∑ 𝑊ℎ
∗𝐿

ℎ=1 𝑦̅ℎ) + (𝑅ℎ)2(∑ 𝑊ℎ
∗𝑌̅ℎ

𝐿
ℎ=1 )

2
− 2𝑅ℎ𝑌̅(∑ 𝑊ℎ

∗𝑌̅ℎ
𝐿
ℎ=1 ) + 𝑌̅2  172 

= (𝑅ℎ)2 ∑ 𝑊ℎ
∗2

𝑣𝑎𝑟(𝑦̅ℎ)𝐿
ℎ=1 + (𝑅ℎ)2𝑌̅2 − 2𝑅ℎ𝑌̅2 + 𝑌̅2    173 

𝐸(𝑦̅𝑠𝑡𝑚
∗ − 𝑌̅)2 = (𝑅ℎ)2 ∑ 𝑊ℎ

∗2
𝑣𝑎𝑟(𝑦̅ℎ) + 𝑌̅2((𝑅ℎ)2 − 2𝑅ℎ + 1)𝐿

ℎ=1                                           (33) 174 

𝐸(𝑦̅𝑠𝑡𝑚
∗ − 𝑌̅)2 = (𝑅ℎ)2 ∑ 𝑊ℎ

∗2
𝑣𝑎𝑟(𝑦̅ℎ)𝐿

ℎ=1 + 𝑌̅2(𝑅ℎ − 1)2  175 

𝑉(𝑦̅𝑠𝑡𝑚
∗ ) = (𝑅ℎ)2 ∑ 𝑊ℎ

∗2
𝜃ℎ𝑆𝑦ℎ

2 + 𝑌̅2(𝑅ℎ − 1)2𝐿
ℎ=1                                176 

𝑉(𝑦̅𝑠𝑡𝑚
∗ ) = (𝑅ℎ)2 ∑ [𝑊ℎ +

(𝑄ℎ𝑊ℎ𝑚ℎ𝑥) ∑ 𝑊ℎ(𝑀ℎ𝑥−𝑚ℎ𝑥)𝐿
ℎ=1

∑ 𝑊ℎ𝑄ℎ𝑚ℎ𝑥
2𝐿

ℎ=1
]

2

𝜃ℎ𝑆𝑦ℎ
2 + 𝑌̅2(𝑅ℎ − 1)2𝐿

ℎ=1                (34) 177 

Where 𝜃ℎ = (
1

𝑛ℎ
−

1

𝑁ℎ
) 178 

2.4 The proposed calibration separate ratio-product type estimators  179 

Theorem 2: Given the separate ratio-product estimator of population mean  180 

𝑦̅𝑠𝑡
𝑅𝑃 = ∑ 𝑊ℎ𝑦̅ℎ𝜆𝐿

ℎ=1   181 

Where            𝜆 = {𝛼ℎ
𝑀ℎ𝑥

𝑚ℎ
+ (1 − 𝛼ℎ)

𝑚ℎ

𝑀ℎ𝑥
} 182 

A calibration separate ratio-product type estimator 𝑦̅𝑠𝑡𝑚
∗ 𝑅𝑃

 for population mean 𝑌̅ given as  183 

𝒚̅𝒔𝒕𝒎
∗ 𝑹𝑷

= ∑ 𝑊ℎ𝑦̅ℎ𝜆 +
∑ 𝑊ℎ

2𝑦̅ℎ𝜆(𝑄ℎ𝑊ℎ𝑚ℎ𝑥)(𝑀ℎ𝑥−𝑚ℎ𝑥)𝐿
ℎ=1

∑ 𝑊ℎ𝑄ℎ𝑚ℎ𝑥
2𝐿

ℎ=1

𝐿
ℎ=1   184 

Is proposed with variance 185 

𝑉(𝑦̅𝑠𝑡𝑚
∗𝑅𝑃) = 𝜆2 ∑ [𝑊ℎ +

(𝑄ℎ𝑊ℎ𝑚ℎ𝑥) ∑ 𝑊ℎ(𝑀ℎ𝑥−𝑚ℎ𝑥)𝐿
ℎ=1

∑ 𝑊ℎ𝑄ℎ𝑚ℎ𝑥
2𝐿

ℎ=1
]

2

𝜃ℎ𝑆ℎ𝑦
2 +𝐿

ℎ=1 𝑌̅2(𝜆 − 1 )2  186 

Proof: 187 

For the separate ratio-product estimator of population mean 𝑌̅  188 

𝑦̅𝑠𝑡𝑚
𝑅𝑃 = ∑ 𝑊ℎ𝑦̅ℎ𝜆𝐿

ℎ=1   189 

Let a calibration estimator be of the form 190 

𝑦̅𝑠𝑡𝑚
∗ 𝑅𝑃 = ∑ 𝑊ℎ

∗𝑦̅ℎ𝜆𝐿
ℎ=1                                                                                                                 (35) 191 

Where 𝜆 = {𝛼ℎ
𝑀ℎ𝑥

𝑚ℎ
+ (1 − 𝛼ℎ)

𝑚ℎ

𝑀ℎ𝑥
} and 𝑊ℎ

∗ is the new weight and chosen such that a chi-square type 192 

loss function  193 

∑ (
𝑊ℎ

∗−𝑊ℎ

𝑄ℎ𝑊ℎ
)𝐿

ℎ=1

2

                                                                                                                    (36)  194 

is minimized subject to a calibration constraint  195 
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∑ 𝑊ℎ
∗𝑚ℎ𝑥 = ∑ 𝑊ℎ𝑀ℎ𝑥

𝐿
ℎ=1           𝐿

ℎ=1                                                                                           (37)  196 

The Lagrange’s function, using Calibration constraints and chi-square distribution measure is  197 

∆= ∑ (
𝑊ℎ

∗−𝑊ℎ

𝑄ℎ𝑊ℎ
)

2

− 2𝜆1(∑ 𝑊ℎ
∗𝑚ℎ𝑥 − ∑ 𝑊ℎ𝑀ℎ𝑥

𝐿
ℎ=1

𝐿
ℎ=1 )𝐿

ℎ=1                                                          (38) 198 

Differentiating (38) with respect to 𝑊ℎ
∗, setting result equal to zero and solving for 𝑊ℎ

∗ 199 

𝑊ℎ
∗ = 𝑊ℎ + 𝜆1𝑚ℎ𝑥𝑄ℎ𝑊ℎ                                                                                                                (39)  200 

Putting equation (39) into (37) and solving for 𝜆1 gives 201 

𝜆1 =
∑ 𝑊ℎ(𝑀ℎ𝑥−𝑚ℎ𝑥)𝐿

ℎ=1

∑ 𝑊ℎ𝑄ℎ𝑚ℎ𝑥
2𝐿

ℎ=1
                                                                                                                   (40)   202 

Substituting for 𝜆1 from (40) in (39) gives the calibration weight for stratified sampling: 203 

𝑊ℎ
∗ = 𝑊ℎ +

(𝑄ℎ𝑊ℎ𝑚ℎ𝑥) ∑ 𝑊ℎ(𝑀ℎ𝑥−𝑚ℎ𝑥)𝐿
ℎ=1

∑ 𝑊ℎ𝑄ℎ𝑚ℎ𝑥
2𝐿

ℎ=1
                                                                                      (41)   204 

Substituting equation (41) into (35) gives the required calibration estimator of population mean as 205 

𝑦̅𝑠𝑡𝑚
∗ 𝑅𝑃 = ∑ 𝑊ℎ𝑦̅ℎ𝜆 +

∑ 𝑊ℎ
2𝑦̅ℎ𝜆(𝑄ℎ𝑊ℎ𝑚ℎ𝑥)(𝑀ℎ𝑥−𝑚ℎ𝑥)𝐿

ℎ=1

∑ 𝑊ℎ𝑄ℎ𝑚ℎ𝑥
2𝐿

ℎ=1

𝐿
ℎ=1                                                               (42) 206 

By putting the turning parameter  𝑄ℎ =
1

𝑀ℎ𝑥
 207 

𝑦̅𝑠𝑡𝑚
∗ 𝑅𝑃 = ∑ 𝑊ℎ𝑦̅ℎ𝜆 +

∑ 𝑊ℎ
2𝑦̅ℎ𝜆(𝑀ℎ𝑥

−1𝑊ℎ𝑚ℎ𝑥)(𝑀ℎ𝑥−𝑚ℎ𝑥)𝐿
ℎ=1

∑ 𝑊ℎ𝑀ℎ𝑥
−1𝑚ℎ𝑥

2𝐿
ℎ=1

𝐿
ℎ=1                                                             (43) 208 

2.5 The variance of the proposed calibration separate ratio-product estimator  209 

The variance of the calibration separate ratio-product estimator 𝑦̅𝑠𝑡𝑚
∗𝑅𝑃 for population mean 𝑌̅ using median 210 

as auxiliary variable is defined as 211 

𝑉(𝑦̅𝑠𝑡𝑚
∗ 𝑅𝑃) = 𝜆2 ∑ [𝑊ℎ +

(𝑄ℎ𝑊ℎ𝑚ℎ𝑥) ∑ 𝑊ℎ(𝑀ℎ𝑥−𝑚ℎ𝑥)𝐿
ℎ=1

∑ 𝑊ℎ𝑄ℎ𝑚ℎ𝑥
2𝐿

ℎ=1
]

2

𝜃ℎ𝑆ℎ𝑦
2 +𝐿

ℎ=1 𝑌̅2(𝜆 − 1 )2  212 

Proof: 213 

 𝑉(𝑦̅𝑠𝑡𝑚
∗𝑅𝑃) = (𝑦̅𝑠𝑡𝑚

∗ 𝑅𝑃 − 𝑌̅)2  214 

𝑦̅𝑠𝑡𝑚
∗ 𝑅𝑃 − 𝑌̅ = ∑ 𝑊ℎ

∗𝑦̅ℎ𝜆 −𝐿
ℎ=1 𝑌̅                                                                                                         (44) 215 

Squaring equation (44) and taking expectation gives 216 

𝐸(𝑦̅𝑠𝑡𝑚
∗ 𝑅𝑃 − 𝑌̅)2 = 𝐸(∑ 𝑊ℎ

∗𝑦̅ℎ𝜆 −𝐿
ℎ=1 𝑌̅)

2
  217 

𝐸(𝑦̅𝑠𝑡𝑚
∗ 𝑅𝑃 − 𝑌̅)2 = 𝐸(∑ 𝑊ℎ

∗𝑦̅ℎ𝜆𝐿
ℎ=1 )

2
− 2𝜆𝑌̅𝐸(∑ 𝑊ℎ

∗𝑦̅ℎ
𝐿
ℎ=1 ) + 𝑌̅2  218 

= 𝑣𝑎𝑟(∑ 𝑊ℎ
∗𝑦̅ℎ𝜆𝐿

ℎ=1 ) + [𝐸(∑ 𝑊ℎ
∗𝑦̅ℎ𝜆𝐿

ℎ=1 )]
2

− 2𝜆𝑌̅𝐸(∑ 𝑊ℎ
∗𝑦̅ℎ

𝐿
ℎ=1 ) + 𝑌̅2  219 

Where  𝐸(∑ 𝑊ℎ
∗𝑦̅ℎ𝜆𝐿

ℎ=1 )
2

= 𝑣𝑎𝑟(∑ 𝑊ℎ
∗𝑦̅ℎ𝜆𝐿

ℎ=1 ) + [𝐸(∑ 𝑊ℎ
∗𝑦̅ℎ𝜆𝐿

ℎ=1 )]
2
 220 

 = 𝜆2𝑣𝑎𝑟(∑ 𝑊ℎ
∗𝑦̅ℎ

𝐿
ℎ=1 ) + 𝜆2(∑ 𝑊ℎ

∗𝑦̅ℎ
𝐿
ℎ=1 )

2
− 2𝜆𝑌̅(∑ 𝑊ℎ

∗𝑌̅ℎ
𝐿
ℎ=1 ) + 𝑌̅2 221 

= 𝜆2 ∑ 𝑊ℎ
∗2𝐿

ℎ=1 𝑣𝑎𝑟(𝑦̅ℎ) + 𝜆2𝑌̅2 − 2𝜆𝑌̅2 + 𝑌̅2  222 

= 𝜆2 ∑ 𝑊ℎ
∗2𝐿

ℎ=1 𝑣𝑎𝑟(𝑦̅ℎ) + 𝑌̅2(𝜆2 − 2𝜆 + 1)  223 

𝐸(𝑦̅𝑠𝑡𝑚
∗𝑅𝑃 − 𝑌̅)2 = 𝜆2 ∑ 𝑊ℎ

∗2
𝑣𝑎𝑟(𝑦̅ℎ) + 𝑌̅2(𝜆 − 1)2𝐿

ℎ=1   224 

𝑉(𝑦̅𝑠𝑡𝑚
∗𝑅𝑃) = 𝜆2 ∑ 𝑊ℎ

∗2
𝜃ℎ𝑆ℎ𝑦

2 + 𝑌̅2(𝜆 − 1)2           𝐿
ℎ=1                                                                        (45)  225 

Where   𝜃ℎ = (
1

𝑛ℎ
−

1

𝑁ℎ
) 226 

Substituting (41) into (45) gives 227 

𝑉(𝑦̅𝑠𝑡𝑚
∗𝑅𝑃) = 𝜆2 ∑ [𝑊ℎ +

(𝑄ℎ𝑊ℎ𝑚ℎ𝑥) ∑ 𝑊ℎ(𝑀ℎ𝑥−𝑚ℎ𝑥)𝐿
ℎ=1

∑ 𝑊ℎ𝑄ℎ𝑚ℎ𝑥
2𝐿

ℎ=1
]

2

𝜃ℎ𝑆ℎ𝑦
2 +𝐿

ℎ=1 𝑌̅2(𝜆 − 1)2                (46) 228 

Setting the turning parameter 𝑄ℎ = 𝑆ℎ𝑥
−2 229 

𝑉(𝑦̅𝑠𝑡𝑚
∗𝑅𝑃) = 𝜆2 ∑ [𝑊ℎ +

(𝑆ℎ𝑥
−2𝑊ℎ𝑚ℎ𝑥) ∑ 𝑊ℎ(𝑀ℎ𝑥−𝑚ℎ𝑥)𝐿

ℎ=1

∑ 𝑊ℎ𝑆ℎ𝑥
−2𝑚ℎ𝑥

2𝐿
ℎ=1

]
2

𝜃ℎ𝑆ℎ𝑦
2 +𝐿

ℎ=1 𝑌̅2(𝜆 − 1)2                          (47) 230 
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2.6 Empirical Results 231 

In this section result of empirical evaluation of the proposed calibration estimators are done using simulated 232 

data set with underlying distributional assumption of Student-T, Cauchy, Lognormal, and standard normal. 233 

The result of the simulation study for percent average relative efficiency, percent average coefficient of 234 

variation, and percent average absolute relative bias of the existing stratified ratio estimator 𝑦̅𝑠𝑡, existing 235 

calibration ratio estimator 𝑦̅𝑠𝑡
∗ , existing calibration separate ratio-product estimator 𝑦̅𝑠𝑡

∗𝑅𝑃, proposed 236 

calibration ratio estimation 𝑦̅𝑠𝑡𝑚
∗  , proposed calibration separate ratio-product estimator 𝑦̅𝑠𝑡𝑚

∗𝑅𝑃 for different 237 

underlying distributions, and sample sizes are presented in Table 1, 2 and 3.  238 

3 Discussion of Finding 239 

From the result of percent average relative efficiency in Table 1, it is observed that when the underlying 240 

distribution is student-t in nature, the efficiency performance of the separate ratio-product estimator 𝑦̅𝑠𝑡
∗𝑅𝑃 241 

is better than other competing estimators at a sample size of 10%. As sample size is increased to 20%, the 242 

existing stratified ratio estimator 𝑦̅𝑠𝑡 is more efficient than the other estimators under study. As the sample 243 

size is further increased to 25%, the efficiency performance of the existing calibration separate ratio-product 244 

estimator is better than those of the other competing estimators.  245 

Table 1: Percent Average Relative Efficiency for T-distribution, Cauchy distribution, Lognormal distribution, 246 
Standard normal distribution 247 

Distribution Sample size 𝑦̂̅𝑠𝑡 𝑦̂̅𝑠𝑡
∗  𝑦̂̅𝑠𝑡

∗𝑅𝑃 𝑦̂̅𝑠𝑡𝑚
∗  𝑦̂̅𝑠𝑡𝑚

∗𝑅𝑃 

Student t 10% 100 1.59 78.66 53.30 103.04 

20% 100 4.97 86.23 30.03 14.49 

25% 100 10.70 244.39 74.18 74.18 

Cauchy  10% 100 151.233 0 4440.25 0.04 

20% 100 107.15 0 639.21 0.19 

25% 100 99.24 0.03 988.37 0.90 

Lognormal 10% 100 100 0 5187397.31 0 

20% 100 100 0 2004581.91 0 

25% 100 100 0 1694912.17 0 

Standard normal 10% 100 1.23 95.47 208.081 70.61 

20% 100 5.52 232.25 115.15 90.24 

25% 100 63.54 1591.89 774.80 438.55 

 248 

For the Cauchy distribution, it is observed that efficiency performance of the proposed calibration ratio 249 

estimator 𝑦̅𝑠𝑡
∗  is better (for all sample sizes considered) than those of the other estimators compared. 250 

However, there is no defined trend as the sample size increases. The result also shows a very poor efficiency 251 

performance for the proposed calibration separate ratio-product estimator 𝑦̅𝑠𝑡𝑚
∗𝑅𝑃 under the Cauchy 252 

distribution. When the underlying distribution is lognormal in nature, it is again observed that the proposed 253 

calibration ratio estimator 𝑦̅𝑠𝑡𝑚
∗  using the median of the auxiliary variable is highly efficient when compared 254 

to existing estimators 𝑦̅𝑠𝑡 and 𝑦̅𝑠𝑡
∗  that uses mean of auxiliary variable.  255 

For the standard normal distribution, there is a notable gain in efficiency for the proposed calibration ratio 256 

estimator 𝑦̅𝑠𝑡𝑚
∗  across all sample sizes. There is still no observable trend as the sample size increases. 257 

However, the proposed calibration separate ratio-product estimator 𝑦̅𝑠𝑡𝑚
∗𝑅𝑃 show a considerable gain in 258 

efficiency at 25%. 259 

The result of the average coefficient of variation in Table 2 shows that when the underlying distribution is 260 

student t-distribution, the calibration separate ratio-product estimator 𝑦̅𝑠𝑡𝑚
∗𝑅𝑃 is a more reliable estimator 261 

compared to the other estimators understudy at sample size of 10%. As sample size is increased to 20%, 262 

the existing stratified ratio estimator 𝑦̅𝑠𝑡 becomes a more reliable estimator when compared to the other 263 

estimators. At sample size of 25%, the existing separate ratio-product estimator 𝑦̅𝑠𝑡
∗𝑅𝑃 is a more reliable 264 

estimator than the competing estimators.  265 
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Table 2: Average coefficient of variation for T-distribution, Cauchy distribution, Lognormal distribution, 266 
Standard normal distribution 267 

Distribution Sample size 𝑦̂̅𝑠𝑡 𝑦̂̅𝑠𝑡
∗  𝑦̂̅𝑠𝑡

∗𝑅𝑃 𝑦̂̅𝑠𝑡𝑚
∗  𝑦̂̅𝑠𝑡𝑚

∗𝑅𝑃 

Student-t 10% 917.98 57618.69 1167.02 1722.29 890.90 

20% 330.50 6655.77 383.29 1100.39 2280.58 

25% 963.81 28487.24 429.51 1299.29 1299.32 

Cauchy  10% 3060 2383.09 1.36e+09 256.68 94436 

20% 786012612 7332 102164238 -12.299 -41589 

25% 11623 11709.09 42321142 1175.65 12865 

Lognormal 10% 89577234 89577234 2.0e+117 8.25e+22 6.03e+93 

20% 10862134 10862134 1.79e+50 543 2.13e+38 

25% 8012143 8012143 7.3e+49 475 1.27e+38 

Standard 

normal 

10% 1.46 119.51 1.53 0.70 2.07 

20% 1.81 32.75 0.78 1.56 2.00 

25% 9.53 15.01 0.60 1.23 2.17 

 268 

For the Cauchy distribution, it is observed that the proposed calibration ratio estimator 𝑦̅𝑠𝑡𝑚
∗  is a more 269 

reliable estimator of the estimators under consideration at sample size 10%, 20% and 25%. However, there 270 

is no defined trend as the sample size increases. The result also reveals that the estimate obtain from the 271 

proposed calibration separate ratio-product estimator is highly unreliable. When the underlying distribution 272 

is lognormal in nature, it is observed that the proposed calibration ratio estimator 𝑦̅𝑠𝑡𝑚
∗  is more reliable than 273 

the other estimators under consideration. It is also notable that the existing stratified ratio estimator 𝑦̅𝑠𝑡 274 

and the existing calibration ratio-product estimators are the same at sample size 10%, 20% and 25%. 275 

For the standard normal distribution, it is observed that the proposed calibration ratio estimator 𝑦̅𝑠𝑡𝑚
∗  is 276 

more reliable than the other estimators under consideration at sample size of 10%. At a sample size of 20% 277 

and 25%, the existing separate ratio-product estimators is observed to be more reliable than the other 278 

estimators under study. 279 

From the result of the simulation study in Table 3, when the underlying distribution is student-t in nature, 280 

it is observed that the proposed calibration separate ratio-product estimator 𝑦̅𝑠𝑡𝑚
∗𝑅𝑃 has minimum bias 281 

compared to the other estimators under consideration at sample size of 10%. As the sample size is increased 282 

to 20%, the existing stratified ratio estimator 𝑦̅𝑠𝑡 show a minimum biasness. At 25% sample size, the 283 

existing calibration separate ratio estimator 𝑦̅𝑠𝑡
∗𝑅𝑃 show minimum biasness compared to the other estimators 284 

under consideration. 285 

Table 3: Percentage Average Absolute Relative Bias for T-distribution, Cauchy distribution, Lognormal 286 
distribution, Standard normal distribution 287 

Distribution Sample size 𝑦̂̅𝑠𝑡 𝑦̂̅𝑠𝑡
∗  𝑦̂̅𝑠𝑡

∗𝑅𝑃 𝑦̂̅𝑠𝑡𝑚
∗  𝑦̂̅𝑠𝑡𝑚

∗𝑅𝑃 

Student-t 10% 9.179 576.19 11.67 17.22 8.90 

20% 3.305 66.56 3.83 11.00 22.81 

25% 9,64 284.87 4.29 12.99 12.99 

Cauchy  10% 36.1 23.83 1.36e+07 2.57 94421 

20% 78.6 73.3 1.0e+06 12.30 41523 

25% 116 117.09 423421 11.76 12861 

Lognormal 10% 8.9e+05 8.9e+05 2.89e+49 17.2 1.98e+37 

20% 1.08e+05 1.08e+05 1.79e+48 5.43 2.13e+36 

25% 8.01e+04 8.01e+04 7.3e+47 4.72 1.27e+36 

Standard 

normal 

10% 146.449 11950.8 153.399 70.38 207.41 

20% 180.75 3275.09 77.8 156.96 200.315 

25% 953.51 1500.74 59.90 123.07 217.43 

 288 

For the Cauchy distribution, it is observed that the proposed calibration ratio estimator 𝑦̅𝑠𝑡𝑚
∗  show 289 

minimum biasness at sample size of 10%, 20% and 25% compared to the other estimators under study. 290 
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However, there is no trend as the sample size increases. The result also indicates that the proposed 291 

calibration separate ratio-product estimator is highly bias when the underlying distribution is Cauchy. 292 

When the underlying distribution is lognormal in nature, it is observed that the proposed calibration ratio 293 

estimator 𝑦̅𝑠𝑡𝑚
∗  has minimum biasness compared to the other competing estimators at 10%, 20% and 25% 294 

sample size. The result also reveals that the proposed calibration separate ratio-product estimator 𝑦̅𝑠𝑡𝑚
∗𝑅𝑃 is 295 

highly bias under the lognormal distribution. 296 

For the standard normal distribution, it is observed that at a sample size of 10%, the proposed calibration 297 

ratio estimator 𝑦̅𝑠𝑡𝑚
∗   has minimum biasness compared to the other estimators under study. As sample size 298 

increase to 20% and 25%, the existing calibration separate ratio-product estimator show minimum biasness 299 

than the other estimators under consideration.  300 

In summary, under the skewed distributions (Cauchy distribution and Lognormal distribution) and the 301 

standard normal distribution, it is observed that the proposed calibration ratio estimator is a more precise 302 

and efficient estimator of the population mean than the competing estimators in this study. This estimator 303 

is found to be consistently better than the other estimators in efficiency and minimum bias as the sample 304 

size increases. This result agrees with [4], [10], [11] result which suggest the use of median of auxiliary 305 

variable as an alternative to the use of auxiliary mean to give a more efficient and less bias estimator of the 306 

population mean. It is also necessary to note that under the lognormal distribution, the conventional ratio 307 

estimator and the calibration ratio estimator give the same results.  308 

4 Conclusion 309 

Calibration estimation technique is a known method used to modify the design weights in other to improve 310 

sample survey estimates by minimizing a distance function subject to one or more constraints when external 311 

information related to the population otherwise known as the auxiliary variable is available. In this work, 312 

calibration ratio estimator and calibration separate ratio-product estimator has been proposed in the 313 

presence of auxiliary information using the median of the auxiliary variable, stratified sampling scheme and 314 

chi-square distance measure. A simulation study was conducted to evaluate the performance of the 315 

proposed estimators in terms of percent average relative efficiency, percent average coefficient of variation, 316 

and percent average absolute relative bias. The result of simulation study shows that under the stratified 317 

sampling, proposed calibration ratio type estimator 𝑦̂̅𝑠𝑡𝑚
∗  gives better estimate of population mean when 318 

the auxiliary variable is highly positively correlated with the study variable and the underlying distribution 319 

is Cauchy distribution, Lognormal distribution or Standard normal distribution. For lognormal distribution, 320 

it appears that the efficiency performance of the proposed calibration ratio estimator  𝑦̂̅𝑠𝑡𝑚
∗  increases as the 321 

sample size is increased. This suggest that the proposed calibration ratio estimator is the most efficient and 322 

list bias estimator of the population mean when the underlying distribution is Cauchy, Lognormal or 323 

Standard normal. However, this is not the case under the other distributions (Student-t, Cauchy and 324 

Standard normal). When the distribution is T-distribution, the efficiency performance of the proposed 325 

calibration separate ratio-product type estimator 𝑦̂̅𝑠𝑡𝑚
∗𝑅𝑃  is better than the other estimators when the sample 326 

size is 10%, but as the sample size increases, the Horvitz Thompson estimator 𝑦̂̅𝑠𝑡  and the calibration 327 

separate ratio-product estimator 𝑦̂̅𝑠𝑡
∗𝑅𝑃 give better precision than the other estimators. The Horvitz 328 

Thompson type estimator 𝑦̂̅𝑠𝑡 and the Sarndal Calibration estimator 𝑦̂̅𝑠𝑡𝑚
∗  give equal precision when the 329 

underlying distribution is lognormal.  330 

5 Declarations 331 

5.1 Study Limitations:  332 

The simulation studies in this work are limited to only standard normal distribution and skewed 333 

distributions.  334 
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