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A B S T R A C T  8 

This paper presents an algorithmic approach for numerically solving Caputo fractional differentiation. 9 
The trapezoidal rule was modified, the new modification was used to derive an algorithm to 10 
approximate fractional derivatives of order α >  0,the fractional derivative used was based on Caputo 11 
definition for a given function by a weighted sum of function and its ordinary derivatives values at 12 
specified points. The trapezoidal rule was used in conjunction with the finite difference scheme which 13 
is the forward, backward and central difference to derive the computational algorithm for the numerical 14 
approximation of Caputo fractional derivative for evaluating functions of fractional order. The study 15 
was conducted through some illustrative examples and analysis of error. 16 

Keywords: Fractional Calculus; Finite difference Scheme; Modified trapezoidal rule. 17 

1 Introduction 18 

Gottfried Wilhelm Leibniz traded ideas on fractional calculus (FC) with other mathematicians in 1695 19 

which name “fractional calculus” were retained for historical reasons [1]. Until the past few decades when 20 

the research community began to notice its elegant and excellent performance for describing a wide range 21 

of artificial and natural processes which the integer–order was limited in, this scientific tool was mostly used 22 

in the field of pure mathematics [1], [2]. For a thorough examination of current advancement and 23 

understanding in FC the readers are directed for numerical analysis to [3]–[6] for physics to [7], [8] for 24 

economics to [9] for mathematics to [10]–[18] and for applications [1], [7]–[9], [13], [19]. Therefore, 25 

identifying not only obstacles, but potentials and also indicating a route for the future could have a big 26 

impact, as a result numerous strategies and tactics have been put forth [15], [20]–[37]. Recent study on this 27 

approach can be found, for example, in [38]–[43]. This article shares the author’s perspective on the major, 28 

and rapidly developing topic of fractional calculus and propose and algorithm for easy computation of 29 

functions with the aid of finite difference scheme and the trapezoidal rule, with this method the problems 30 

are resolved due to the methods high adaptability and applications are made easier while maintaining 31 

efficiency. Engineers and scientists use numerical integration which is fundamental to obtain 32 

approximations of definite integrals that are difficult to solve analytically [42], [43]. One method among 33 

others that can be used for approximation of definite integrals of a specific function value at particular 34 

points is the Trapezoidal rule which is based on dividing the area between the curve of f(x) and the 35 

horizontal axis into strips and then interpolating the function f(x)  by a sequence of (straight) lines [5]. 36 

Given that the interval [a,b] is subdivided into 𝑀 subintervals [𝑥𝑘 , 𝑥𝑘+1]  of width ℎ =
(𝑏−𝑎)

𝑀
 by using the 37 

equally spaced nodes 𝑥𝑘 = 𝑎 + 𝑘ℎ for 𝑘 = 0,1, … , 𝑀. The composite trapezoidal rule for M subintervals 38 

can be defined as [5], [6] and expressed in any of three equivalent ways: 39 
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T(𝑓, ℎ) =
ℎ

2
∑ (𝑓

𝑀

𝑘=1
(𝑥𝑘−1) + 𝑓(𝑥𝑘))        (1.0) 40 

or 41 

𝑇(𝑓, ℎ) =
ℎ

2
(𝑓0 +2 𝑓1 +2 𝑓 2 + 2 𝑓 3+ …+2𝑓𝑚−2 + 2𝑓𝑚−1 + 𝑓𝑚)                  (1.1) 42 

or        43 

T(𝑓, ℎ) =
ℎ

2
(𝑓(𝑎) + 𝑓(𝑏)) + ℎ ∑ 𝑓(

𝑀−1

𝑘=1
𝑥𝑘).      (1.2) 44 

Which is an approximation of the integral of 𝑓(𝑥) over [a, b],  45 

∫ 𝑓(𝑥) 𝑑𝑥 ≈ 𝑇(𝑓, ℎ).
𝑏

𝑎
      (1.3) 46 

Error Analysis 47 

If 𝑓(𝑥) ∈ 𝑪𝟐 [𝑥, 𝑦], then there is a value 𝜏 with 𝑥 < 𝜏 < 𝑦 so that the error term 𝐸(𝑓, ℎ) has 48 

the form  49 

𝐸(𝑓, ℎ) =
−(𝑦−𝑥)𝑓

(2)(𝜏)(ℎ2)

12
= 𝑶(ℎ2)       (1.4) 50 

and  51 

𝐸(𝑓, ℎ) = ∫ 𝑓(𝑥) 𝑑𝑥 − 𝑇(𝑓, ℎ).
𝑏

𝑎
        (1.5) 52 

2 Materials and Techniques 53 

This section presents some Mathematical basics which will be necessary for further evaluation in this paper, 54 

some of which include definitions, properties and theorems and can be found in [5], [6], [42]–[44]. 55 

2.1 The Caputo Fractional Derivative 56 

Given that m is the smallest integer greater than α, then Caputo fractional derivative of order α >0 is 57 

defined as [44] 58 

 𝐷∗
𝛼𝑓(𝑥) = 𝐽𝑚−𝛼𝑓𝑚(𝑥) with   𝑚 − 1 < 𝛼 < 𝑚,  59 

given 60 

𝐷∗
𝛼𝑓(𝑡) = {

1

Г(𝑚−𝛼)
[∫

𝑓(𝑚)(𝜏)

(𝑥−𝜏)𝛼+1−𝑚 𝑑𝜏
𝑥

0
] ,   𝑚 − 1 < 𝛼 < 𝑚,

𝑑𝑚

𝑑𝑥𝑚 𝑓(𝑥),                                                      𝛼 = 𝑚.
                            (1.6) 61 

For 0 < 𝛼 < 1, the true value of the fractional derivative 𝐷∗
𝛼cos (𝑥) is given by 62 

𝐷∗
𝛼 cos(𝑥) =  𝑥𝑚−𝛼 ∑

(−1)𝑘

Г(𝑚−𝛼+2𝑘+1)
.∞

𝑘=0             (1.7) 63 

2.2 Modification of Trapezoidal Rule  64 

Theorem 1: Given that the interval [0, a] is subdivided into k subintervals [𝑥j, 𝑥j+1 ] of equal 65 

width ℎ = 𝑎/𝑘  by using the nodes 𝑥j= 𝑗ℎ, for  𝑗 =  0, 1, . . . , 𝑘 The modified trapezoidal rule 66 

is given as [43] 67 

𝑇(𝑓, ℎ, 𝛼) = ((𝑘 − 1)α + 1 – (k – α - 1) kα) 
ℎ𝛼 𝑓(0)

Г(𝛼+2)
 + 

ℎ𝛼𝑓(𝑎)

Г(𝛼+2)
 68 

+ ∑ ((𝑘−1
𝑗=1 k – j + 1) α + 1 - 2(k – j) α+1 + (k – j – 1) α + 1) 

ℎ𝛼𝑓(𝑥𝑗)

Г(𝛼+2)
                             (1.8) 69 

This is an approximation to fractional integral 70 

(𝐽𝛼𝑓(𝑥))(𝑎) = 𝑇(𝑓, ℎ, 𝛼) − 𝐸𝑇(𝑓, ℎ, 𝛼),    𝑎 > 0,   𝛼 > 0.                             (1.9)  71 
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Proof: From the Riemann–Liouville fractional integral operator 𝐽𝛼𝑓(𝑥) of order 𝛼 >  0  on the usual 72 

Lebesgue space 𝐿1[𝑎, 𝑏] we have 73 

(𝐽𝛼𝑓(𝑥))(𝑎) =  
1

Г(𝛼)
∫ (𝑎 − 𝜏)𝛼−1𝑓(𝜏)𝑑𝜏.

𝑎

0
                                     (2.0) 74 

If 𝑓𝑘  is the linear interpolant that is piecewise for 𝑓 whose nodes are chosen at 𝑥𝑗, 𝑗 =  0, 1, 2, . . . , 𝑘, then, 75 

we have 76 

∫ (𝑎 − 𝜏)𝛼−1𝑎

0
𝑓𝑘(𝜏)𝑑𝜏 =

𝒉𝜶

𝜶(𝜶+𝟏)
. {

((𝑘 − 1)𝛼+1 − (𝑘 − 𝛼 − 1)𝑘𝛼)𝑓(0) + 𝑓(𝑎)

+ ∑ ((𝑘 − 𝑗 + 1)𝛼+1 − 2𝑘−1
𝑗=1 (𝑘 − 𝑗)𝛼+1 + (𝑘 − 𝑗 − 1)𝛼+1)𝑓(𝑥𝑗)

     (2.1) 77 

and  78 

|∫ (𝑎 − 𝜏)𝛼−1𝑓(𝜏) −
𝑎

0
∫ (𝑎 − 𝜏)𝛼−1𝑓𝑘

𝑎

0
(𝜏)𝑑𝜏| ≤ 𝐶𝛼‖𝑓′′‖∞𝑎𝛼ℎ2.                                   (2.2) 79 

Thereafter theorem 1 from (2.1) and (2.2) where 𝐶𝛼
′ =

𝐶𝛼
𝛤(𝛼)⁄ . 80 

This method behaves in a manner that is similar to the classical trapezoidal rule. Substituting α = 1 the 81 

modified trapezoidal rule reduces to the classical trapezoidal rule. 82 

2.3 Caputo Fractional Derivative Rule 83 

Theorem 2: Suppose that the interval [0, a] is subdivided in to 𝑘 subintervals [𝑥𝑗 , 𝑥𝑗+1] of equal width ℎ =84 

𝑎 𝑘⁄   by using the nodes  𝑥𝑗 = 𝑗ℎ, for 𝑗 =  0, 1, . . . , 𝑘 − 1. Then we have the rule [43] 85 

𝐶(𝑓, ℎ, 𝛼) =
ℎ𝑚−𝛼

Г(𝑚+2−𝛼)
{((𝑘 − 1)𝑚−𝛼+1 − (𝑘 − 𝑚 + 𝛼 − 1)𝑘𝑚−𝛼)𝑓(𝑚)(0) + 𝑓𝑚(𝑎) + ∑ ((𝑘 −𝑘−1

𝑗=186 

𝑗 + 1)𝑚−𝛼+1 − 2(𝑘 − 𝑗)𝑚−𝛼+1 + (𝑘 − 𝑗 − 1)𝑚−𝛼+1) 𝑓(𝑚)(𝑥𝑗)},                   (2.3) 87 

This gives an approximation to the fractional derivative by Caputo 88 

(𝐷∗
𝛼𝑓(𝑥))(𝑎) = 𝐶(𝑓, ℎ, 𝛼) − 𝐸𝑇(𝑓, ℎ, 𝛼), 𝑎 > 0, 𝑚 − 1 < 𝛼 ≤ 𝑚                                       (2.4) 89 

Furthermore, if 𝑓(𝑥) ∈  𝑪𝑚+2[0, 𝑎] then there is a constant 𝐶𝛼 
′ depending strictly on α so that the error 90 

term 𝐸𝐶(𝑓, ℎ, 𝛼) is expressed as 91 

|𝐸𝐶(𝑓, ℎ, 𝛼)| ≤  𝐶𝜶
′ ‖𝑓(𝑚+2)‖

∞
𝑎𝑚−𝛼ℎ2 =  𝟎(ℎ2).                                         (2.5) 92 

If we replace the term 𝑓(𝑚)(𝑥𝑗), 𝑚 − 1 < 𝛼 ≤ 𝑚, on the right-hand side of (2.3) with the required formula 93 

from the finite difference formulas [5], [6] and by cancelling the term ℎ𝑚,we obtain the general term 94 

(𝐷∗
𝛼𝑓)(𝑎) =95 

ℎ−𝛼

Г(𝑚+2−𝛼)
{

((𝑘 − 1)𝑚−𝛼+1 − (𝑘 − 𝑚 + 𝛼 − 1)𝑘𝑚−𝛼)𝑔𝑚(0)

+ ∑ ((𝑘 − 𝑗 + 1)𝑚−𝛼+1 − 2(𝑘 − 𝑗)𝑚−𝛼+1 + (𝑘 − 𝑗 − 1)𝑚−𝛼+1)𝑘−1
𝑗=1 𝑔𝑚(𝑥𝑗) + 𝑔𝑚(𝑎)

} +96 

𝐸(𝑓, ℎ, 𝛼), 𝑚 − 1 < 𝛼 ≤ 𝑚.          (2.6) 97 

In the case of 0 < 𝛼 < 1, then the Caputo fractional derivative rule (2.3) diminishes to the formula 98 

𝐶(𝑓, ℎ, 𝛼) =
ℎ1−𝛼

Г(3−𝛼)
{

((𝑘 − 1)2−𝛼 − (𝑘 + 𝛼 − 2)𝑘1−𝛼)𝑓′(0) + 𝑓′(𝑎) +

∑ ((𝑘 − 𝑗 + 1)2−𝛼 − 2(𝑘 − 𝑗)2−𝛼 + (𝑘 − 𝑗 − 1)2−𝛼)𝑘−1
𝑗=1 𝑓′(𝑥𝑗)

},  (2.7) 99 

If 𝑓(𝑥) ∈  𝑪3[0, 𝑎] error term 𝐸𝐶(𝑓, ℎ, 𝛼) is given as 100 

|𝐸𝐶(𝑓, ℎ, 𝛼)| ≤  𝐶𝟏−𝜶
′ ‖𝑓(3)‖

∞
𝑎1−𝛼ℎ2 =  𝟎(ℎ2).    s               (2.8) 101 

For some constant 𝐶𝟏−𝜶
′  depending strictly on 𝛼 102 
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Proof: Considering definition (1.6), replace 𝛼 by 𝑚 − 𝛼 and 𝑓(𝑥𝑗) by 𝑓(𝑚)(𝑥𝑗) in Theorem 1.  103 

Where 𝑓(𝑚)(𝑥𝑗) is the forward, backward or central difference formulas to the mth derivatives as well as 104 

many other finite difference formulas for approximating derivatives, can be derived by using Taylor’s series 105 

expansion [5], [6]. 106 

When 1 < 𝛼 < 2, the Caputo fractional derivative rule (2.3) minimizes to the formula  107 

𝐶(𝑓, ℎ, 𝛼) =
ℎ2−𝛼

Г(4−𝛼)
{

((𝑘 − 1)3−𝛼 − (𝑘 + 𝛼 − 3)𝑘2−𝛼)𝑓′′(0) + 𝑓′′(𝑎)

+ ∑ ((𝑘 − 𝑗 + 1)3−𝛼 − 2(𝑘 − 𝑗)3−𝛼 + (𝑘 − 𝑗 − 1)3−𝛼)𝑘−1
𝑗=1 𝑓′′(𝑥𝑗)

},  (2.9) 108 

If 𝑓(𝑥) ∈  𝑪4[0, 𝑎] error term 𝐸𝐶(𝑓, ℎ, 𝛼) is given as 109 

|𝐸𝐶(𝑓, ℎ, 𝛼)| ≤  𝐶𝟐−𝜶
′ ‖𝑓(4)‖

∞
𝑎2−𝛼ℎ2 =  𝟎(ℎ2).       (3.0) 110 

For some constant 𝐶𝟐−𝜶
′  depending strictly on 𝛼 111 

3 Theory/Calculation 112 

We shall consider here some problems of interest for the illustration of the method of the preceding section. 113 

The concept offered above are closely followed in this section, we limit ourselves to the instance of  0 < 𝛼 114 

< 1 for the purpose of conciseness. It is to be noted that the results presented in the tables below were 115 

obtained using MATLAB 2016a package. 116 

 117 

Example 1: Consider the function 𝑓(𝑥) = 𝑐𝑜𝑠𝑥, in Tables 1-3 using the definition of Caputo fractional 118 

derivative.  119 

Table 1: The approximate value for the Caputo fractional derivative rule using the central 120 
formula: 𝐷∗

0.75𝑐𝑜𝑠 (𝑥)(1) 121 

K h    𝑻(𝒇, 𝒉, 𝟎. 𝟕𝟓) 𝑻𝑻(𝒇, 𝒉, 𝟎. 𝟕𝟓) 

10                                                     0.1                          -0.765492171 0.001710770 

20                               0.05 -0.766766637 0.000436305 

40                               0.025 -0.767092116 0.000110825 

80                               0.0125 -0.767174873 0.000028069 

160                             0.00625 -0.767195848 0.000007093 

320                             0.003125 -0.767201152 0.000001789 

 122 

Table 2: The approximate value for the Caputo fractional derivative rule using the forward difference 123 
formula: 𝐷∗

0.75𝑐𝑜𝑠 (𝑥)(1) 124 

K h    𝑻(𝒇, 𝒉, 𝟎. 𝟕𝟓) 𝑻𝑻(𝒇, 𝒉, 𝟎. 𝟕𝟓) 

10                                                     0.1                          -0.769500650 0.002297702 

20                               0.05 -0.767747961 0.000545020 

40                               0.025 -0.767334705 0.000131763 

80                               0.0125 -0.767235168 0.000032226 

160                             

320 

0.00625 

0.00312 

-0.767210878 

 -0.767204904 

0.000007936 

0.000001963 

 125 
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Table 3: The approximate value for the Caputo fractional derivative rule using the backward difference 126 
formula: 𝐷∗

0.75𝑐𝑜𝑠 (𝑥)(1) 127 

K h    𝑻(𝒇, 𝒉, 𝟎. 𝟕𝟓) 𝑻𝑻(𝒇, 𝒉, 𝟎. 𝟕𝟓) 

10                                                     0.1                          -0.769132238 0.001929296 

20                               0.05 -0.767701829 0.000498888 

40                               0.025 -0.767328936 0.000125994 

80                               0.0125 -0.767234447 0.000031505 

160                             

320 

0.00625 

0.003125 

-0.767210788 

 -0.767204893 

0.000007846 

0.000001951 

4 Results and Discussion 128 

Trapezoidal rule is an effective tool for approximation of derivatives and integral of arbitrary order 129 

particularly when combined with the finite difference scheme [38]. Engineers and scientist find it useful 130 

especially in dealing with problems that are either difficult or cannot be solved analytically, this approach is 131 

not only unique but limited in literature and efficient in practice especially when numerical solution is 132 

sought, [38], [42], [45]. 133 

 134 

Figure 1: This figure shows the convergence to the exact solution as the step size reduces when the trapezoidal 135 
rule was modified using the forward, backward and central deference scheme for approximation of 𝑐𝑜𝑠 (𝑥) at 136 

𝛼 = 
3

4
 .  Table 1-3 are represented in the graph above. 137 

Our method is for approximation of functions of arbitrary order and for brevity we limit ourselves to  0 <138 

𝛼 < 1. We solve some examples to demonstrate the effectiveness of the algorithm by evaluating the 139 

fractional derivative of the function 𝑓(𝑥) = 𝑐𝑜𝑠𝑥  using the modified trapezoidal rule for 𝛼 =  0.75. Table 140 

1 gives the approximate value for the Caputo fractional derivative rule using the central difference, table 2 141 

was evaluated considering the Caputo fractional derivative rule and the forward difference formula while 142 

table 3 represent the backward difference scheme with the Caputo fractional derivative rule. Table 1-3 143 

shows the numerical values and errors when compared with the exact solution using the central, forward 144 
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and backward difference formula and figure 1 shows the uniform convergence of all three strategies as the 145 

step-size decreases. Therefore, we can observe that when ℎ (step size) is reduced by a factor of 1/2  the 146 

successive errors are diminished by approximately 1/4  this confirms the order is O(ℎ2) and consistent 147 

with the error analysis presented above. This method is effective and consistent especially when compared 148 

with other methods and solvers [38]–[42]. 149 

5 Conclusion  150 

Trapezoidal rule has been used in conjunction with the finite difference scheme to derive the computational 151 

algorithm for the numerical approximation of Caputo fractional derivative for evaluating functions of 152 

arbitrary (real) order. We noticed that the accuracy of the method depends on the step size and the error 153 

order of the finite difference scheme and also consistent with current technics and approach.  154 
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