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A B S T R A CT  

This paper employed the intelligent approach based on machine learning categorized as base and 

ensemble methods in classifying the disaster risk in the Philippines. It focused on the Decision 

Trees, Support Vector Machine, Adaptive Boosting Algorithm with Decision Trees, and Support 

Vector Machine as base estimators. The research used the Exponential Regression for missing 

value imputation and converted the number of casualties, damaged houses, and properties into five 

(5) risk levels using Quantile Method. The 10-fold cross-validation was used to validate the 

proposed algorithms. The experiment shows that Decision Trees and Adaptive Decision Trees are 

the most suitable models for the disaster data with the score of more than 90%, more than 75%, 

more than  75%  in all the classification metrics (accuracy, precision, recall f1-score) when applied 

to classification risk levels of casualties, damaged houses and damaged properties respectively.  
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1 Introduction 

The Philippines is considered vulnerable to hazards brought by various natural calamities such as tropical 

cyclones, earthquakes, volcanic eruptions, and other natural disasters. This is due to the geographical 

location of the country in SouthEast Asia [15]. Among the stated natural disasters, tropical cyclone is one 

of the most destructive phenomena that brought a high number of casualties and damages in both 

residential and commercial infrastructures. One of the strongest tropical cyclones is the typhoon Haiyan 

with the local name typhoon Yolanda in 2013. It was estimated that the said typhoon brought at least 8,000 

casualties with a total cost of damage of more than 2000 million USD for both agriculture and infrastructure 

[15], [10].  In the record of the Philippine Atmospheric, Geophysical, and Astronomical Services 

Administration (PAGASA), the country experiences an average of twenty (20) tropical cyclones every year 

[22]. Due to this natural phenomenon, the Philippine Government continues to plan to minimize the 

casualties and damages brought by the said calamity. 

Data Science, the newest and the fastest-growing area in the field of information technology education has 

a bigger role and impact in the policy-making of different private and public institutions. One of the major 

roles of this area of study is to help the government or private institutions to develop a policy and strategic 

plan by applying various algorithmic models. As highlighted in the study of Kolman [11], these algorithms 

and algorithmic models may dictate what policy is perceived feasible.  Hagen et.al [8] also concluded that 

visual analytics, a major area of Data Science has potentially positive impacts on policy-making practices. 

When Data Science was mentioned, Artificial Intelligence (AI) always comes in, especially if the type of 

data analysis involves predictions or classifications. Artificial Intelligence is sometimes denoted as Machine 
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Learning (ML) techniques [21]. This is because ML is an application of AI that provides systems the ability 

to automatically learn and improve from experience without being explicitly programmed and focuses on 

the development of computer programs that can access data and use it to learn from themselves [20]. 

In this study, an ensemble algorithm is known as Adaptive Boosting (AdaBoost) Algorithm under ML 

Supervised Learning will be used in the classification of the level of disaster risk brought by tropical cyclones 

in the Philippines. Ensemble methods train multiple learners to solve the same problem and construct a set 

of base learners using the base learning algorithm and combine them [26]. Among the existing type of 

ensemble algorithms, AdaBoost was used due to its ability to identify misclassified instances that occur 

because of the disjunct problem or the datasets which contain instances in a class that is clustered in several 

separate small groups, and each group contains a small number of instances that cannot be disregarded and 

should be trained [12],[18]. Specifically, this study will be employing the Decision Trees (DT) and Support 

Vector Machine (SVM) as base learning algorithms or as base estimators. These two base estimators were 

used since it shows exceptional performance in adjusting the accuracy of the ensemble model [12]. After 

the implementation of methods, evaluation of each performance will be applied in the DT, SVM, DT-

AdaBoost, and DT-SVM.  

The data used in this study is gathered from different government agencies such as the National Disaster 

Risk Reduction and Management Council (NDRRMC),  Philippine Statistical Authority (PSA), Philippine 

Atmospheric, Geophysical, and Astronomical Services Administration (PAGASA), and Department of 

Health (DoH). Using the proposed method, this research will classify the level of the disaster risk in the 

country which serves as a dependent variable and the rest of the gathered data such as population, details 

regarding the tropical cyclone and the number of hospitals will be the predictors or will serve as independent 

variables. Historical data from 2005 to 2016 was used to verify the performance of the methods used in 

this study. 

Aside from experimenting with a suitable machine learning algorithm for classification, this study was 

conducted to help the Philippines government in assessing the potential risks of the disaster. This 

knowledge will lead the policymakers to allocate more resources to the prone areas to reduce casualties 

during the phenomena. 

The same study was conducted by Alquisola et al. [7] in 2018 that predicts the disaster risks using various 

models such as Autoregressive Integrated Moving Average (ARIMA), Discrete Wavelet Transform (DWT), 

and Artificial Neural Networks (ANN). The combined algorithms generated an accuracy of 68% for 

casualties, 39.84% for Damaged Houses, and 33.33% for Damaged Properties. Due to the low performance 

of the model, it was recommended to explore other models in predicting the risk level of tropical cyclones. 

This paper explored and experimented various methods to classify the risks of the typhoon in the 

Philippines. Using the available data coming from the government agencies, the Adaptive Boosting 

Algorithm, an ensemble supervised learning method was implemented. Two of the famous Based 

Algorithms, Decision Trees and Support Vector Machines will be used as based estimators of the Adaptive 

Boosting Algorithm. 

2 Related Works 

The successful implementation of AdaBoost is the key factor why this study used the said model for the 

classification of disaster risk. Various application fields such as medicine, business, and others proved that 

this model provided good performance for prediction or classification. Zarandi et al. [4] used the AdaBoost 

with Support Vector Regressor in modeling minimum miscibility pressure of pure/impure CO2-crude oil 

systems and concluded that the model gives the most acceptable and accurate result with a very satisfactory 

error distribution. AdaBoost was also implemented by Walker & Jiang [23] in the demand-driven acquisition 

of library materials and compared it to the logistic regression model. The authors concluded that AdaBoost 

performs better with an accuracy of 82%. In the study of Wang et al. [13] regarding the classification of the 
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large-scale traffic data, AdaBoost used to classify by automatically detecting the outliers in traffic data and 

the SVM used to train the model for identifying the categories of outliers. The AdaBoost-SVM achieved a 

classification rate of 92%.  

This method can also be implemented in image processing. In the study of Fan et al. [5], the group proposed 

the AdaBoost procedure for low-rank-based image denoising and concluded that it outperformed other 

denoising algorithms in terms of Peak Signal-to-Noise Ratio (PSNR)  and Structural Similarity Index 

(SSIM). The group of Feng et al. [6], proposed this method to predict the compressive strength of concrete 

by employing Artificial Neural Network (ANN), Support Vector Machine, and Decision Trees as base 

predictors. The result of their experiment shows that the Decision Tree is the best choice for the weak 

learner in the boosting framework with an accuracy rate of 98%. The model was also used in the case study 

of Liu & Chen [13] to predict the spatial air quality index in China. It was concluded that the model is 

suitable for the air quality early-warning since it significantly outperforms the other models used in the 

experiment. 

AdaBoost was also implemented in the wireless sensor networks by Yadahalli & Nighot [16] and the result 

of the experiment obtained a detection rate of 98.13% with a false alarm rate of 0.38. This was also used in 

the fault diagnosis and compared in the SVM. The result of the experiment conducted by Peng et al. [14] 

showed that AdaBoost is more efficient than SVM.  He et al. [9] also applied the AdaBoost in the fault 

diagnosis with resampling and the simulation result achieved higher fault diagnosis accuracy than the other 

models.  

Finally, Wu et al. [25] the model was applied in the landslide susceptibility mapping to help the decision-

makers in utilizing the land resources and achieve economic development as well as bring harmony between 

human beings and the fragile loess environment. The data were simulated in different models such as 

Alternating Decision Tree (ADT), Alternating Decision Tree with AdaBoost (ADT-AdaBoost), Alternating 

Decision Tree with Bagging (ADT-Bagging), and the results claimed that ADT-AdaBoost is the most 

efficient models among the three (3) models with a success rate of 98.4%. 

3 Methodology and System Models 

The Input-Process-Output (IPO) of the research was presented in Figure 1 and the complete flow of the 

whole system was shown in Figure 2. The gathered data categorized as hazard variables, exposure variables, 

vulnerability variables, and disaster risks variables used in the study underwent preprocessing. The 

exponential regression was used for missing data imputation and the quantile method was implemented to 

classify five (5) disaster risk levels (1 -Very Low, 2-Low, 3 - Moderate, 4 - High, 5- Very High) with 0 as no 

risk. The range of each level per risk was presented in Table 1. Then the data partitioning was applied where 

80% of the total data used in the training of algorithms and the remaining 20% was used for testing.    

After data partitioning, the data will undergo training in using the DT, SVM, DT-AdaBoost, and SVM-

AdaBoost. The model is then evaluated using the K-fold cross-validation with the tuning of parameters. 

Once validated it will be producing the accuracy of the training models. Once the parameters of the models 

are settled, the generated models will be used to the testing stage where the remaining 20% of the data will 

be fed in the same algorithms as the training stage for classification.  

Finally, the metrics of the classification will be obtained such as classification matrix, accuracy, precision, 

recall, F1-score. The result will be used to determine if there is a significant difference in the actual and 

classified risk level using the non-parametric test. 

http://journals.aijr.org/
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Figure 1: Conceptual Framework of the Study 

 

 

 

Figure 2: System Architecture of the Study 
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3.1 Exponential Regression 

The role of exponential regression in this study is to forecast the gaps of year values of the different 

predictors such as population. The data for the population has gaps in between years because PSA conducts 

surveys about population every 5 years only, sometimes every 3 years. Thus, the exponential regression was 

used to predict the gap year values in terms of population. The Exponential Regression model was shown 

in (1). 

 

                                                                 (1) 

 

where: 

   f(t) = population after t years 

a  = initial value 

b  = base or  growth factor 

t =  time in years 

3.2 Quantile Deviation 

Quantile Method is also known as Percentile Method is a type of data classification method where the 

values are distributed into groups or classes that contain an equal number of features. t can also refer to 

dividing a probability distribution into areas of equal probability [17]. The quantile method can be used to 

determine the thresholds of risk level based on its use in the World Risk Index by the World Risk Report 

organization. The formula was shown in (2) that calculates the number of observations per class. 

 

                                                                (2) 

 

where:        TOC = Total Observation per Class  

                     TO = Total Observation 

                     NC = Number of Class 

 

The dependent variables (casualty, damaged houses, and damaged properties) in the dataset are the actual 

values of the risks. To be able to feed them to the classification algorithm, the quantile method was used 

to classify these dependent variables into five (5) classes, where one (1) has the lowest risk level and five (5) 

has the highest risk level. The use of the quantile classification method provided the data classes at the 

extremes and middles the same number of features. The representation of each class on the map is equal, 

and the classes are easy to compute. 

3.3 Decision Trees 

Decision trees used in this study since it does not require any prior assumptions about the probability 

distributions that govern the class and attributes of the data. This model also can be applied to both 

categorical and continuous data without requiring the attributes to be transformed into a common 

representation via binarization, normalization, or standardization [19]. The Pseudocode below shows the 

steps of Decision Tree Classifiers when used in the disaster risks data. [19]. The input will be the disaster 

risk data (training or testing) with instances I together with the independent and dependent variables known 

as attributes A. It will select the best attributes recursively and split the data and expand the nodes of the 

tree until the required condition is satisfied. 
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Decision Tree Induction 

TreeGrowth(I, A) 

if stopping_cond(I, A) =  true then 

     leaf = createNode() 

     leaf.label = Classify (I). 

     return leaf. 

else 

     root = createNode() 

     root.test_cond = find_best_split(I, A) 

     let O = {o|o is the possible outcome of root.test_cond}. 

     for each o element of O do 

         Io = {i|root.test_cond(i) = o and i is an element of I} 

         child = TreeGrowth(Io, A). 

         add child as descendant of root and label the edge as o. 

    end for 

end if 

return root. 

3.4 Support Vector Machine 

Support Vector Machine is one of the widely used classification algorithms whereas the data is plotted in 

an n-dimensional space given that n represents the total number of features available in the data and the 

value of the features lie in a particular coordinate. To perform the classification of risk level in the data, the 

following steps were presented in the pseudocode.  The algorithm searches for the candidate support 

vectors represented by S and assumes that SV occupies a space where the parameters of the linear features 

of the hyper-plane are stored [23]. 

 

Support Vector Machine 

AttributeSupportVector(ASV) = {Closest Attribute Pair from 

Opposite Classes} 

while margin constraints violating points exist do 

       Find the violator 

       ASV = ASV union Violator 

       If any ap < 0 because of the addition of c to S then 

             ASV = ASV/p 

             repeat all the violating points are pruned 

             end if 

      end while 

3.5 Adaptive Boosting Algorithm 

Once the data is processed in the Decision Trees or Support Vector Machine, the model will be fed in the 

Adaptive Boosting Model.  The procedure was presented by Chun & Kim [3] was shown below where the 

data given data start with initialization of the weight which was computed as the reciprocal of the total 

number training data. Then it will call the weak learners from the base estimators. In this study, the weak 

learners are Decision Trees and Support Vector Machines. After choosing the alpha, the weights will be 

updated and it will produce a strong classifier. 
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Adaptive Boosting Algorithm 

Given: (x1, y1), …, (xm, ym) xi ∈ X, yi ∈ {-1, 1} 

Initialize weight D1(i) = 1/m 

For t = 1, 2, …, T 

Call weak learn which returns weak classifier ht: X ∈  {-1, 

1}       

                  with minimum error w.r.t. Dt 

Choose αt ∈ R 

Update weight        

                             

                 when Zt is a normalization factor chosen so that Dt+1        

                 is a normal distribution 

Produce the strong classifier 

                            

3.6 K-Fold Cross-Validation 

K-fold cross-validation is a procedure used to estimate the skills of the algorithms used in training the 

disaster risk data with k = 10.  As presented by [2], it first shuffles the dataset randomly and then splits the 

datasets into k groups. Then for every unique group, it takes the group as hold out or test data; takes the 

remaining groups as training data set; fits a model on the training set and evaluate it on the test set; and 

retain the evaluation score and discard the model. Lastly, it summarizes the skill of the model using the 

sample of model evaluation scores. The diagram in Figure 3 shows the k -fold cross-validation. 

Figure 3: K-Fold Cross-Validation 

3.7 Classification Metrics 

Classification Metrics will be used to determine the performance of different classification models presented 

in this paper. Confusion Matrix, Accuracy, Precision, Recall or Sensitivity, and F1 Score will be provided 

and computed.  
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3.7.1 Confusion Matrix 

Confusion matrix utilized for classification problems that can generate an output with two or more types 

of classes. It is presented in two-dimensional matrices containing actual and prediction classes whose 

elements were represented by True Positive (TP), True Negatives (TN), False Positives (FP), and False 

Negative (FN) The said matrix is presented in the table below.  

 

Table 1: Confusion Matrix 

 Actual 

 

Predicted 

 Positives (1) Negatives (0) 

Positives (1) TP FP 

Negatives (0) FN TN 

3.7.2 Accuracy 

Accuracy will be used to determine the correct classified risk level. The numerator will contain the correctly 

classified risk level while the denominator will be the total classified risk levels. Using the confusion matrix, 

the accuracy can be calculated using TP and TN using (4). 

                                            (4)                                          

3.7.3 Precision 

The precision will be used to determine the proportion of the results which are relevant and correctly 

classified risk levels.  

                                                       (5) 

3.7.4 Recall or Sensitivity 

Recall or sensitivity will be used to determine the proportion of True Positive and the sum of True Positive 

and False Positive.  

                                                            (6) 

3.7.5 F1-Score 

F1 score is used to maximize both precision and recall using the harmonic mean as shown in (7). 

                                           (7) 

3.8 Paired Wilcoxon Test 

To determine if there is no difference between the actual and predicted value of the risk level, the paired 

Wilcoxon test was used at alpha = 5% level of significance.  When the p-value is higher than the alpha the 

test will imply that the predicted value is the same as the actual value. Otherwise, it will lead to the 

conclusion that the model is not good for the prediction of disaster risk. 
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4 Model Performance Analysis 

This section discussed the result of the models used in the experiment. The presentation was categorized 

as Casualties, Damaged Houses, and Damage Properties. 

4.1 Casualties 

Table 2: Comparison of Performance of Risk Level Classification for Casualties  

     

      Models 

Classification Metrics 

Accuracy Precision Recall F1 Score 

DT 92.14% 91.60% 92.20% 92.00% 

SVM 86.04% 74.40% 86.20% 79.60% 

AdaBoostDT 92.14% 91.80% 92.00% 92.00% 

AdaBoostSVM 86.04% 74.40% 86.20%8 79.60% 

DWT-ARIMA-ANN 62.81% 22.54% - - 

 

Using the gathered data, the result for simulation of the proposed method in classifying the casualties risk 

level was shown in Table 2. Included in the last row of the table is the output of the previous study where 

Discrete Wavelet Transform-Autoregressive Integrated Moving Average - Artificial Neural Networks was 

implemented in the same data. 

The model with the highest accuracy, precision, recall, and f1 score is Decision Trees and AdaBoost-DT 

with scores of more than 90%. Support Vector Machine and AdaBoost-SVM have the same result in all the 

metrics. Almost a 30% and 70% difference was observed between the new method and the previous 

method in the prediction or classification of disaster risks under casualties.  

4.2 Damaged Houses 

In terms of dealing with the damaged houses, there is a very low metric score for the SVM and AdaBoost-

SVM with a score of less than 50%.  Whereas, DT and AdaBoost-DT achieved a good result of more than 

70% in all the metrics. It was also shown that a big improvement exists as compared with the previous 

study using DWT-ARIMA-ANN based on accuracy and precision.  

Table 3: Performance of Risk Level Classification for Damaged Houses 

     

      Models 

Classification Metrics 

Accuracy Precision Recall F1 Score 

DT 75.90% 76.20% 75.80% 75.80% 

SVM 38.92% 30.80% 39.00% 34.00% 

AdaBoostDT 75.56% 76.00% 75.60% 75.60% 

AdaBoostSVM 27.81% 15.60% 28.00% 14.40% 

DWT-ARIMA-ANN 39.84% 31.72% - - 

4.3 Damaged Properties 

The result of the classification of risk level under damaged properties using the proposed models is almost 

similar to the result of the damaged houses' risk level. Both DT and AdaBoost-DT obtained a score of 
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more than 70% for all the stated metrics while the SVM and AdaBoost-SVM garnered less than 50% for 

all the metrics. Table 4 also shows that the DT and AdaBoost-DT is a better method in predicting the risk 

level of damaged properties than the DWT-ARIMA-ANN. 

To determine if there is no significant difference between the classified risk level using the proposed 

methods, the paired Wilcoxon test was implemented. 

Table 4: Performance of Risk Level Classification for Damaged Properties 

 

     

      Models 

Classification Metrics 

Accuracy Precision Recall F1 Score 

DT 75.04% 75.60% 75.00% 75.00% 

SVM 36.47% 28.40% 36.40% 29.40% 

AdaBoostDT 74.30% 74.60% 74.20% 74.20% 

AdaBoostSVM 28.49% 9.60% 28.60% 14.40% 

DWT-ARIMA-ANN 33.33% 40.03% - - 

 

The result of the test shows that for the three categories such as casualties, damaged houses, and damaged 

properties only the Decision Trees and Adaptive Boosting Decision Trees can be considered a good and 

acceptable model using the data. The summary of the p-value was presented in Table 5. 

Table 5: P-value using Paired Wilcoxon Test 

     

      Models 

p-value 

Casualties Damaged Houses Damaged Properties 

DT 0.89113 0.24869 0.55697 

SVM 2.82022 x 10 -10 6.16666 x 10 -5 0.00047 

AdaBoost-DT 0.20179 0.215631 0.19943 

AdaBoost-SVM 2.82022 x 10 -10 7.02532 x 10 -5 3.729 x 10 -7 

5 Conclusions 

This research proposed a method known as ensemble algorithms under supervised learning to address the 

need of the Philippines government in policymaking and resource allocation during the disaster. Four 

methods were experimented such as Decision Trees (DT), Support Vector Machine (SVM), Adaptive 

Boosting Algorithm with Decision Trees as Base Estimator (AdaBoost-DT), and Adaptive Boosting 

Algorithm with Support Vector Machine as Base Estimator (AdaBoost-SVM). The methods were also 

compared in the accuracy of the previous research [7] where DWT-ARIMA-ANN was used. This research 

concluded that Decision Trees outperformed the remaining models. Adaptive Boosting-Decision Trees can 

also be considered a good model for the classification of disaster risk level due to its small difference in 

accuracy and other metrics when compared to Decision Trees. Also, there is no significant difference in 

the actual and predicted disaster risk level in the casualties, damaged houses, and damaged properties when 

both Decision Trees and Adaptive Boosting -Decision Trees were implemented using the Wilcoxon test. 

http://journals.aijr.org/


17 

 

ISSN: 2582-2365 
Available online at Journals.aijr.org 

Donata D. Acula, J. Mod. Sim. Mater.; Vol. 4 Issue 1, pp: 7-18, 2021 

Future researchers are encouraged to use the successful models in the other field of application and apply 

other methods to classify the risk level of the same data. 
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