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A B S T R A CT  

Parametric modeling provides a mean of deeper understanding to the properties of materials. Dielectric 

function is one of the key parameters which can provide information on the dielectric nature of a thin film 

or bulk materials. It can be obtained by modeling the material using appropriate existing, new or modified 

models.  In our work, we utilized existing Brendel and Drude models to extract the optical constants from 

spectrophotometric data of fabricated undoped and niobium doped titanium oxide thin films. The 

individual contributions by the two models were studied to establish influence on the dielectric function. 

The effect of dopants on their influences was also analyzed. Results indicate a minimal contribution from 

the Drude term due to the dielectric nature of the undoped films. However as doping levels increase, the 

rise in the concentration of free electrons favors the use of Drude model.  
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1 Introduction 

Oscillator models are of interest to material scientists for the study of atomic and electronic behavior in 

materials [1]. This is made possible through the electronic or atomic interaction with an electric field [2], [3]. 

Examples of such models are the Lorentz and Drude models [1], [4], [5]. To the very least, Lorentz assumes 

electrons are bound by a spring like force while the later considers electrons as being unbound.  Despite the 

simplistic assumption, Drude model has been shown to provide a fair explanation on cases when electrons are 

considered to have an appreciable interaction with each other and can be used to study the optical properties 

at energies below the band gap accounting for intraband transitions of the conduction electrons [6]. Several 

other models have been developed to address materials whose behavior do not fit well in the realm of Lorentz 

and Drude models. Brendel oscillator model [7] is the one of such models, which is an extension of the simple 

harmonic oscillator model [8], and is useful in modeling the influence of interband transitions in the band gap 

region but accounts for local variations in disordered systems. 

2 Theoretical Considerations 

There is a fundamental connection between electrical and optical properties of matter.  They both are governed 

by the electronic structure and electromagnetic radiation interacts with charges present in the matter. The 

polarization of charges P by an applied field E is a function of the complex dielectric function  according to 

           
,)1(0 EP −= 
                     (1) 
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where 0 is the dielectric constant of free space and- 

           ).(i)()( 21  +=                  (2) 

The optical properties can also be described in terms of the complex index of refraction N as- 

         )()()(  iknN +=                    (3) 

where n is the real index of refraction and k is the extinction coefficient. Although they have a frequency 

dependence, they are usually called optical constants. The dielectric function is related to the index of refraction 

through the equation 

          .2N=                        (4) 

The dielectric function can often be divided into several terms, each term represents different excitation 

mechanism;  

          FCVE  ++=   .                  (5) 

where 
  high frequency dielectric constant while VE and FC  are the susceptibilities of the valence electrons 

and the free carriers respectively. The form of the latter parameter is often dictated by the oscillator models.  

The free carrier behavior is often investigated by Drude model and FC can be expressed as: 
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Where  is the radiation frequency,  is the damping and P is the plasma frequency of the bound electrons, 

which depends on the number of electron taking part in the interband or intraband transition, ne with; 
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Considering the Brendel Oscillator model [7], VE takes the form; 
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where  is the resonance frequency, f is the oscillator strength parameter and  denotes the width of the 

distribution. The Brendel term is a weighted superposition of an infinite number of Lorentz oscillators and has 

been found to be applicable to interband absorption in a number of materials [9]. It follows therefore that the 

expression for the dielectric function in Equation (5) based on Brendel and Drude models herein simply 

referred to as Brendel-Drude becomes: 
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3 Experiment and Modeling 

Experimental data used was obtained from thin films of TiO2:Nb made through dual-target reactive dc 

magnetron sputtering by following procedures as described elsewhere [10], [11]. A small amount of H2 was 

added in order to avoid target poisoning and allow stable sputtering conditions [12], [13].  The film’s 

composition was determined by Rutherford backscattering spectrometry (RBS) technique in the range of 

atomic weights from 1 (H) to 41 (Nb). Extraction of optical constants was done by fitting spectrophotometric 
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experimental data to Brendel and Drude models using the Scout software. 

4 Results and Discussion 

Figure 1 shows composition results for the undoped and Niobium doped titanium films which confirmed that 

undoped film had no niobium and one of the doped film sample had 3.7% niobium (at.%).  

 
Figure 1: RBS spectra for (a) Undoped TiO2 and (b) Nb doped TiO2 with 3.7 at. % Nb. The elements are marked 

The optical properties of the materials were determined from the best fit between computed and experimental 

data, using SCOUT commercial software [14]. The extensive data obtained contained optical parameters 

from Intraband, interband and dielectric background contributions. Figure 2 is a sample fit for a 3.7 at. % TiO2: 

Nb film. The fit utilized Brendel and Drude models. 

 
Figure 2: Simulated (blue) and experimental (red) spectra for Nb:TiO2 film with 3.7 at.% Nb and thickness 228 nm. 

The sample was annealed in vacuum for 30 minutes at 450 °C  

Table 1 shows electrical resistivity and carrier concentration for two films.  The values were computed using 

well-known expressions; 
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The undoped film were insulating with resisivity in the order of 102 ohm-cm while niobium doping introduced 
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free carriers into the film and improved conductivity. From theory, good conductors respond well to Drude 

model as a result of interaction between the free electrons and the electric field [1], [4]. Undoped films are 

therefore expcted to respond poorly to Drude model while atempting to utlize the model to extract the optical 

contants  (n and k). 

Table 1: Electrical and carrier concentration for undoped and dioped Nb:TiO2 

Description of annealed 

Samples of Nb:TiO2  
Resistivity cm−  Carrier concentration 

3−cm  

Undoped Nb:TiO2  3.31 x 102 9.13 x 1015 

Nb:TiO2 with 3.7 at.% Nb 3.46 x 10-3 1.25 x 1021 

 

Figure 3 clearly shows minimal Drude model contribution which is attributed to the insulating nature of the 

films. Intraband transions dominate which is clearly demonstrated by the Brendel model. As carrier 

concentration rises due to doping, both Drude and Bredel models are expected to play a role due existence of 

both intraband [15] and interband transistions as is evident in Figure 4.  The presence of free carriers is well 

illustrated in Figure 4.  Drude model is expected to have a greater contribution to the k values for the 

condudcting films which is indeed the case. 

 
Figure 3: Individual contributions to optical constants n and k due to Drude and Brendel Models  

for undoped TiO2 film. The dielectric background for refractive index is 2.026. 

 
Figure 4: Individual contributions to optical constants n and k due to Drude and Brendel Models  

for doped TiO2 film 
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5 Conclusion 

The objective of the work was to demonstrate the versatility of the parametric modeling in the study of 

materials. The paper has showed individual contributions by Brendel and Drude models and how they relate 

to the nature of the films and provides a mean for deeper understanding of the materials. Interband transitions 

in the semiconductors require high energies. In these energy ranges, a model that responds to high frequencies 

is expected to be useful. Energies below the band gap do not favor interband transitions. Instead transitions 

are limited to conduction or valence bands and these effects can be investigated fairly well by the Drude model.  
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