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A B S T R A CT  

We present a set of equations expressing the parameters of the magnetic interactions of an electronic 

system. This allows to establish a mapping between the initial electronic system and a spin model 

including up to quadratic interactions between the effective spins, with a general interaction 

(exchange) tensor that accounts for anisotropic exchange, Dzyaloshinskii–Moriya interaction and 

other symmetric terms such as dipole–dipole interaction. We present the formulas in a format that 

can be used for computations via Dynamical Mean Field Theory algorithms. 
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1 Introduction 

Describing a solid in terms of its magnetic properties requires the knowledge of an effective spin model 

which displays the same interesting physical properties as the many-electron Hamiltonian whose exact 

solution would give the complete description of the system. The determination of the form of the 

effective spin model and of the strength of the interactions between the constituent spins starting from 

the initial electronic model is, in general, a complicated many-body problem [1–5]. We have recently 

derived expressions for the parameters of the magnetic interactions within an extended (multi-orbital) 

Hubbard model [6], in the presence of arbitrary relativistic couplings affecting the electronic degrees of 

freedom (such a spin orbit, magnetic anisotropy, Zeeman coupling with an external magnetic field). The 

formulas presented in Ref. [6], after neglecting the vertices of two-electron Green’s functions, are 

expressed in terms of single-electron (but fully interacting) Green’s functions G and the single-electron 

(hopping) Hamiltonian T. The use of presentation via T [6,7] for computations related to real materials 

requires the additional step of a tight-binding parametrization, which is implemented only in some 

methods of electronic structure calculations. On the other hand, a presentation of the  formulas in terms 

of Green’s functions G and self-energies Σ would make them more suitable for implementation via 

Dynamical Mean Field Theory (DMFT), since any DMFT calculation deals with G and Σ. Writing the 

parameters in a way that explicitly exhibits self-energies, analogous to what was done in Refs. [1,2], also 

allows to explicitly include the approximation of local self-energy, which is the key assumption of DMFT 

[8,9,10,11].  

Spin-orbit interaction in two-dimensional materials brings many exotic phenomena to be explored. In 

transition-metal dichalcogenides, large spin-orbit interaction induced band splitting in both conduction 

and valence band gives rise to valley Hall effect [17,18] and unconventional quantum Hall effect [19,20]. 

Recently, band inversion caused by spin-orbit coupling proximity effect5 is observed in graphene/WSe2 

heterostructure [21]. 
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Spin-orbit interaction has been extensively studied in III-V semiconductors like InGaAs/InAlAs 

quantum wells for spintronic applications [22,23]. Chiral crystals with spin-orbit interaction are predicted 

to host Kramers-Weyl fermions and other topological quantum properties [24]. 

We here present the adaptation of the formulas for the exchange tensor to this scheme. 

2 Method and discussion 

We consider the extended multi-orbital Hubbard Hamiltonian, 

H = ∑o,σ,m∑o′,σ′,m′φo,σ,m
† To′,σ′,m′

o,σ,m φo′,σ′,m′ + H𝑉, (1) 

 

where the field operator φo,σ,m
†

 creates an electron with quantum numbers o, σ, m refers to a set of the 

orbital indices (for a basis of localized Wannier wave functions, these are the atom index a, the principal 

atomic quantum number n and the angular momentum quantum number l:o≡a,n,l, while σ↑,↓ and m∈l, 

l+1,...,l are the third components of the intrinsic spin and orbital angular momenta, respectively. Local 

angular momenta are measured with respect to local reference frames, which depend on o and might not 

be collinear [12]. The single particle Hamiltonian matrix To′,σ′,m′
o,σ,m

 is completely arbitrary, so it can include 

any relativistic single-electron terms (Zeeman coupling, spin-orbit, magnetic anisotropies). The interaction 

Hamiltonian H𝑉 is assumed to be rotationally invariant. 

The goal in Ref. [10] was to map the model given by Eq. (1) onto an effective model of classical spins 𝑒𝑜 

including up to (arbitrary) quadratic interactions, with Hamiltonian, 

𝐻𝑠𝑝𝑖𝑛 =∑𝑜eo·Bo+
1

2
∑𝑜,𝑜′∑𝑎,𝑎′′𝑒𝑜,𝑎𝑒𝑜′,𝑎′𝐻𝑜𝑜′

𝑎𝑎′ , (2) 

 

determined by the exchange tensor 𝐻𝑜𝑜′
𝑎𝑎′=𝐻𝑜′𝑜

𝑎′𝑎 (here and in the following α and α’ are used to denote the 

space coordinates, e.g.x,y,z) and the effective magnetic field Bo. It is convenient to decompose the 

exchange tensor into the three vectors 𝐽𝑜𝑜′=𝐽𝑜′𝑜  (anisotropic exchange), 𝐷𝑜𝑜′ =−𝐷𝑜′𝑜  (Dzyaloshinskii–

Moriya interaction), and 𝐶𝑜𝑜′=𝐶𝑜′𝑜 (symmetric non-diagonal exchange), defined as 

𝐽𝑜𝑜′
𝛼  ≡𝐻𝑜𝑜′

𝛼𝛼 ,  (3) 

 

𝐷𝑜𝑜′
𝛼  ≡

1

2
∑𝛼′𝛼′′𝜖

𝛼′𝛼′′𝛼′′′𝐻𝑜𝑜′
𝛼′𝛼′′ ,   (4) 

 

Coo′
α  ≡

1

2
∑𝛼′𝛼′′|𝜖𝛼′𝛼′′𝛼′′′|𝐻𝑜𝑜′

𝛼′𝛼′′,  (5) 

where 𝜖𝛼′𝛼′′𝛼′′′ is the completely anti-symmetric tensor of rank 3. The Heisenberg model is obtained as 

the particular case in which 𝐻𝑜𝑜′
 𝛼𝛼′ ≡𝛿𝛼𝛼′𝐽𝑜𝑜′. 

To perform the mapping, in Ref. [5,9], we have derived the response of the thermodynamic potential of 

the electronic system under small spatially dependent rotations of the spin quantization axes associated 

with each orbital spinor denoted by o, up to second order in the rotation angles. The derivation of such 

response involves path integration over the fermionic fields after the introduction of auxiliary bosonic 

degrees of freedom which express the amplitudes of rotations from an initial spin configuration; the 

coefficients of the interactions between the remaining bosons are put in correspondence with the 

parameters of the spin model (2) by imposing that the thermodynamic potential of the spin system after 

the spin rotations is equal to that of the electrons. Excluding the vertex contributions, the parameters of 

the spin model are expressed in terms of single-electron Green’s functions (which of course include 

interaction effects) and the single-particle part of the electronic Hamiltonian, T [13-15].  

This procedure is similar to the one previously adopted in Refs. [4,5] for the case of quenched orbital 

moments, but in Ref. [12], we have considered rotations of the local total  spins 𝑆𝑜
2=𝑙𝑜

2+𝑠𝑜
2, where 𝑙𝑜

2 and 

𝑠𝑜
2 are orbital and spin, respectively, the orbital and intrinsic angular momenta associated with the states o. 

More precisely, we have considered rotations in the space of the single-particle eigenfunctions of 𝑆𝑜
2 and 

https://journals.aijr.in/index.php


81 

 

ISSN: 2582-2365 
Available online at Journals.aijr.in 

Eunsung Jekal, J. Mod. Sim. Mater.; Vol. 3 Issue 1, pp: 79-83, 2020 

𝑆𝑜
𝑧, analogous to Ref. [9], while in Refs. [4,5] the rotations affected the space of eigenfunctions  of of 𝑠𝑜

2 

and 𝑠𝑜
𝑧 .  This allowed us to obtain formulas for the exchange tensor that can be separated into 

contributions coming from the interactions between spin-spin, orbital-orbital, or spin-orbital degrees of 

freedom of the electrons; for example, for the anisotropic exchange parameters we have  

 

𝐽𝑜𝑜′ ≡𝐽𝑜𝑜′
spin−spin

 +𝐽𝑜𝑜′
orbit−orbit +𝐽𝑜𝑜′

spin−orbit
,    (6) 

 

The terms labelled as spin-spin or spin are those contributions to magnetic interactions that would arise if 

we kept the orbital magnetic moments quenched, i.e., if we rotated only the intrinsic spin- spinors. 

Analogously, the terms labelled as orbit or orbit-orbit arise if we rotate only the orbital magnetic 

moments, keeping the intrinsic spins quenched. The terms labelled as spin-orbit arise only when the total 

local magnetic moments are rotated; these terms should not be confused with spin-orbit coupling, which 

contributes in general to all terms [1–10].  

It should be noted that the possibility of rotating the total local spins is not applicable within Density 

Functional Theory (DFT) formulations, where observables are expressed in terms of the charge density 

and the intrinsic-spin density. The possibility of rotating local total spin is related to the representation of 

the electronic Hamiltonian in terms of localized wave functions, which implies a higher number of 

degrees of freedom with respect to DFT (related to the fact that the set of localized states would be over 

complete in theory, or not even complete in practice due to truncation).  

The computation of the magnetic parameters via DMFT is greatly simplified if they are formulated in 

terms of single-particle Green’s functions and self-energies Σ in magnetically ordered states, since this 

avoids the initial step of a tight-binding parameterization of the single-electron Hamiltonian, T. To 

remove T and introduce Σ, we use the equations of motion for Matsubara Green’s functions (Dyson 

equations), which we write in general matrix notation as 

 

(ω−iμ)G(iω) + iT·G(iω) = 1−Σ(iω)·G(iω), 

(ω−iμ)G(iω) + iG(iω)·T= 1−G(iω)·Σ(iω).(7) 

 

These equations hold for the Matsubara Green’s functions defined according to the following convention: 

𝐺2
1(τ)≡−i<Tψ1(τ)ψ2

 †
>≡ 

1

β
∑ω𝐺2

1 (iω)eiωτ (8) 

Where ω= (2n+ 1) π/β is a fermionic Matsubara frequency, β being the inverse temperature.  As a 

particular case, the single-electron density matrix is given by  

ρ≡−iG(τ= 0−) =−i
1

β
∑ωeiω+G(iω).(9) 

We now have to distinguish between the magnetic parameters that can be computed from the second 

order response in the rotation angles and those which are computed from the first-order response.  From 

Ref.  [12], we note that the former terms can all be written in terms of the following quantity: Foα,o′α′
XY  

where X,Y∈[spin,orbit]  refer  to  either  spin-  or orbital-related terms, that is, 

Soα
spin

 ≡soα ≡ 
1

2
σoα, Soα

orbital≡
1

2
𝑙oα,(10) 

where soα  is an intrinsic spin matrix (sigma oα is a Paulimatrix), while 𝑙oα  is an orbital angular 

momentum matrix. In Eq.(10), we have used the notation{A;B}≡A·B+ B·A to denote the 

anticommutator of the matrices A and B; in the following we will also make use of [A;B]≡A·B  B·A to 

denote the commutator.  From the Dyson equations (5), we have (the frequency arguments of Green’s 

functions G and self-energies Σ are implicit): 

T·G=−i[1−(ω−iμ)G−Σ·G],G·T=−i[1−(ω−iμ)G−G·Σ], 

T·G·T=−iT+ Σ−Σ·G·Σ + (ω−iμ)(1−Σ·G−G·Σ)− (ω − iμ)2G, 

[T;ρ] = Trω [Σ;G], (11) 
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where we have introduced the notation  
1

β
 ∑ωeiω0+f(iω)·g(iω)≡Tω(f·g).(12) 

 

Applying Eqs. (12)  to Eq.  (10), we obtain 

 

𝐹𝑜𝛼,𝑜′𝛼′
𝑋𝑌  =

1

2
δoo′ TrωTrm,σ [(𝑆𝑜𝛼

𝑋 ; 𝑆𝑜𝛼
𝑌 )·(𝐺;  𝛴)o

o]−T 𝑟𝜔T𝑟𝑚,𝜎 

[𝑆𝑜𝛼
𝑋 ·[𝐺;  𝛴]o

o′·𝑆𝑜′𝛼′
𝑌 ·(𝐺;  𝛴)o

o′+𝑆𝑜𝛼
𝑋 ·[𝐺;  𝛴]o′

o ·𝑆𝑜′𝛼′
𝑌 ·[𝛴 · 𝐺]𝑜

𝑜′ 

−𝑆𝑜𝛼
𝑋 ·[𝛴 · 𝐺 · 𝛴]𝑜′

𝑜 ·𝑆𝑜′𝛼′
𝑌 ·Go

o′−𝑆𝑜𝛼
𝑋 ·G𝑜′

𝑜 ·𝑆𝑜′𝛼′
𝑌 ·[𝛴 · 𝐺 · 𝛴]𝑜

𝑜′]− T 𝑟𝜔T𝑟𝑚,𝜎 

(𝑆𝑜𝛼
𝑋 ·𝛴𝑜′

𝑜 ·SYo′α′·𝐺𝑜
𝑜′+𝑆𝑜′𝛼′

𝑌 ·𝛴𝑜
𝑜′·𝑆𝑜𝛼

𝑋 ·𝐺𝑜′
𝑜 ),  (13) 

 

We then consider the magnetic parameters determined from the first-order response. From Eqs.(68) of 

Ref. [12], we see that these are 𝐵0
𝑥 , 𝐵0

𝑦
, 𝐷0

𝑥0′, 𝐷0
𝑦
0′, 𝐶0

𝑥0′, and 𝐶0
𝑦

0′. The first-order response term can be 

written as 

 

𝑉𝑜𝛼
𝑋  =iT𝑟𝑚,𝜎 [𝑆𝑜𝛼

𝑋  ·[𝜌; 𝑇]o
o] =iT𝑟𝑚,𝜎T𝑟𝜔 [𝑆𝑜𝛼

𝑋 ·[𝐺;  𝛴]o
o] = iT𝑟𝑚,𝜎T𝑟𝜔 ∑𝑜′ [𝑆𝑜𝛼

𝑋 ·[𝐺0′
0 ·𝛴0

0′−𝛴0′
0 ·𝐺0

0′].    (14) 

 

By separating local and non-local terms, as well as taking into account the symmetries of the latter, it is 

then possible to identify the remaining parameters of the spin model. It should be noted that the 

parameters obtained with this procedure are not equivalent to those expressed in terms of the single-

electron Hamiltonian T in Refs. [11, 12, 17]. These are different definitions, which respect the defining 

equations (68) of Ref. [11,12, 17], but are more directly applicable for a DMFT implementation.  

3 Conclusions 

We have provided the formulas for the general exchange tensor expressing the quadratic magnetic 

interactions in strongly correlated systems, in a version that can be implemented via DMFT. The 

formulas allow to compute the effects due to intrinsic-spin and orbital degrees of freedom of the 

electrons on equal footing (the orbital magnetic moments are not quenched), and to distinguish between 

spin, orbital and spin orbital interactions that contribute to the exchange tensor. The obtained formulas 

represent the extension to the relativistic case and the generalization to unquenched orbital magnetic 

moments of the well-known formulas for spin-only exchange interactions, which are recovered as a 

particular case. We remark that effects due to the non-locality of self-energies in position space are 

included in our theory both as presented in Ref. [12] and as presented here; although they cannot be 

computed within DMFT, a possible approach to include them is via the Dual-Fermion scheme. 
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