
ISSN: 2582-2365 
Volume 3, Issue 1, pp. 53-60, 2020 
DOI: https://doi.org/10.21467/jmsm.3.1.53-60 

 

Copyright © 2020. The Author(s). Published by AIJR Publisher.  
This is an open access article under Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license, 
which permits any non-commercial use, distribution, adaptation, and reproduction in any medium, as long as the original work is 
properly cited. 

RESEAR CH ARTI CLE  

Validation and Optimization of Thermophysical Properties for 

Thermal Conductivity and Viscosity of Nanofluid Engine Oil  

using Neural Network 

Amin Moslemi Petrudi, Masoud Rahmani 

Department of Mechanical Engineering, Tehran University, Iran  

* Corresponding author email: amin.moslemi2020@gmail.com   

Received: 31 January 2020 / Revised: 23 May 2020 / Accepted: 02 June 2020 / Published: 10 June 2020 

A B S T R A CT  

In this study, the thermophysical properties of thermal conductivity and viscosity of a motor oil 

nanofluid were investigated using experimental data and artificial neural network. NSGA II 

optimization algorithm was used to maximize thermal conductivity and minimum viscosity with 

changes in temperature and volume fraction of nanofluids. Also, to obtain the viscosity and thermal 

conductivity values in terms of nanofluid temperature and volume fraction with 174 experimental data, 

neural network modeling was performed. Input data include temperature and volume fraction, and 

output is viscosity and thermal conductivity. Various indices such as R squared and Mean Square Error 

(MSE) have been used to evaluate the accuracy of modeling in the prediction of viscosity and thermal 

conductivity of nanofluids. The coefficient of determination R squared is 0.9989 indicating acceptable 

agreement with the experimental data. In order to optimize and finally results as an objective function, 

the optimization algorithm is presented and the Parto front and its corresponding optimum points are 

presented where the maximum optimization results of thermal conductivity and viscosity occur at 1% 

volume fraction.  
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1.   Introduction 

Nanofluids have been rapidly attracted to various industries because of their unique thermal conductivity. 

First coined the term nanofluid, by Choi in 1995 at Argonne Research Institute in the USA, it was used for 

solid metal particles in the liquid and it was noted that there is a significant difference between the stability 

and transient properties of these fluids compared to conventional liquid and macro fluid particles [1].  

Nano-fluids have been widely used because of their properties, which makes them particularly important 

to investigate. Also, because these properties depend on the concentration of nanoparticles in the base 

fluid, by changing the concentration of nanoparticles, the nanofluid properties can be adjusted [2]. Art 

optimization is about finding the best answer in the current situation. Optimization is used in the design 

and maintenance of engineering, economic and even social systems in order to minimize the cost and or 

maximize profits. Optimization methods have been used to increase productivity and reduce costs [3]. The 

structure and principles of multi-objective optimization are the same as single-objective optimization, but 

in some ways the number of variables and objective functions in these methods are increased and used to 

find an optimal solution set rather than an optimal one [4]. Vajjha et al., Conducted studies to determine 

the thermal conductivity of nanofluids with temperature. The subjects used water / aluminum oxide 

nanoparticles and water / copper oxide in their experiments. The results of their experiments indicated a 

direct dependence of thermal conductivity on temperature. The increase in thermal conductivity of water 

/ copper oxide nanofluids was more than that observed in water nanofluids / aluminum oxide. The 

researchers cited random and irregular movements of nanofluids in the solution as a possible cause of the 

increase in thermal conductivity, since nanofluids could easily move in the solution [5]. Sabour et al. 
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Comparative study of Artificial Neural Networks (ANN) and Response Surface Method (RSM) for 

simultaneous optimization of multiple targets in Fenton treatment of landfill leachate [6]. Zhao et al. 

investigated the effect of suspended nanofluid size on the thermal conductivity of nanofluids. For this 

purpose, nanofluids with 36 and 47 nm diameter nanofluid suspensions (1% to 6% by volume of nanofluid 

fraction) were prepared in water. Concentrations of the specimens were irradiated with ultrasonic waves 

for 51 minutes. It has been observed that the thermal conductivity of these nanofluids increases with the 

increase of nanofluid bulk fractions, and the increase in temperature also increases the thermal conductivity 

of the specimens. Table 1 presents some of the research on the parameters affecting the viscosity and 

thermal conductivity of nanofluids that have been described and presented using ANN in nanofluids. The 

use of nanofluids in heat transfer has many advantages such as smaller heat exchangers, improved heat 

transfer efficiency as well as reduced radiation. More energy can be saved by using nanofluids in the 

pumping process [7].   

 

Table 1 Research on the viscosity and thermal conductivity of nanofluids 

 

 

In the present study, in order to maximize thermal conductivity and minimum viscosity by varying the 

temperatures (313 to 333) Kelvin and volume fraction (0 to 1%) of nanofluid motor oils, laboratory studies 

and modeling were performed using NSGA II optimization algorithm. The modeling is done using ANN 

and the results are given as an objective function to the optimization algorithm. Based on the findings of 

the present study, engine oil nanofluids have not been investigated in vitro by ANN modeling. The 

nanofluid has been analyzed in volume fractions and at different temperatures and a new relation has been 

proposed for its viscosity. Experimental data and data obtained from ANN are found to be in good 

agreement with each other, indicating a high degree of accuracy. 

2.   NSGA II Method 

Non-dominated Sorting Genetic Algorithm (NSGAII) is one of the advanced evolutionary algorithms that 

requires algorithm parameters to be set up in the algorithm shown in Figure 1 below [12]. 

1. Initialize population (pop-size) 

2. Cross over (pc) 

3. Mutation (pm) 

4. Max iteration (Gen) 

Years Methods Characteristic Nanofluid Author(s) 

2017 
ANN and 

GRG 
Thermal conductivity Al2O3 Tajik et al.[8] 

2017 ANN 
Optimization of 

microwave-assisted 
Microwave Ameer et al.[9] 

2017 
RSM and 

ANN 
Ultrasound-assisted Ultrasound Huang et al.[10] 

2017 
RSM and 

ANN 
Factor evaluation Alumina Ohale et al.[11] 

2019 ANN 
Optimization/statistical 

model composed   
CuO/liquid Bagherzadeh et al. [20]  

2019 RSM 
  Flow inside a square 

enclosure 

Magneto-

hydrodynamic   
Pordanjani et al [21] 

2020 RSM 
Multi-objective 

Optimization 
Nanotube Moslemi et al. [22] 

2020 ANN 
Thermal Optimization 

and Dynamic Viscosity 
Water Hybrid Moslemi et al. [23] 
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Fig. 1 Display of the optimization algorithm 

 

In this algorithm, the offspring population (Qt) must first be constructed using the parent population (pt) 

[13]. In this section, instead of using non-dominant offspring solutions, merge (Qt) and (pt) together and 

form a population of Rt with 2N members and then use a non-dominant categorization to categorize the 

entire population of Rt used, that is, evaluate the current population and divide them into categories with 

different values [14,15]. The range will be 1 to 2n. And they will form the next generation. Figure 2 shows 

the structure of the NSGA II network. 

 
Fig. 2 NSGA II network structure 

Answers 1i −  and 2i −  the answers before and after are the answer of i, then the distance of the 

congestion of my answer is as follows: 

 

1 1 1 1 1

max min

1 1

( ) ( )i i
i

f x f x
d

f f

+ −−
=

−
 

(1) 
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2 2 1 2 1

max min

2 2

( ) ( )i i
i

f x f x
d

f f

− +−
=

−
 

(2) 

1 2

i i id d d= +  (3) 

Therefore, in a binary tournament, the answer i is superior to the answer j if either of the following 

conditions is true: 

➢ Rank i is less than rank j (ri<rj). 

➢ If answer i is equal to j then answer i is superior to answer j if the answer distance i is greater 

than the answer distance j (dj>dj). 

A new population of alternatives is formed after the ranking and spacing process, and then by the methods 

commonly used in genetic algorithms, new populations are generated, new alternatives are generated and 

then the previous steps are repeated [16,17]. Figure 3 shows the computation of compaction distance in the 

NSGA II algorithm. 

 

 
Fig. 3 Computation Distance Compression in NSGA II Algorithm. 

3.   Result and discussion 

ANN are systems based on empirical data. The human brain has sets of 1011 living neurons that form a 

very complex structure of tissues and chemical interactions. Some neural structures have been associated 

with humans since birth, and others have been formed during human life experiences. Scientists are 

currently at the forefront of understanding neural networks and have focused solely on how the complex 

works [18]. According to the discovery, all living neural functions, such as memory, are stored in neurons 

and in communication between them. Learning means starting a new relation between neurons or changing 

existing ones. Neural Networks Two basic properties of neural networks include routing and parallelization 

of the structure and are used extensively in system simulation, especially in nonlinearity. Neural networks 

in complex systems provide suitable solutions [19]. Figure 4 illustrates a three-layer neural network for 

modeling viscosity and thermal conductivity. 
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Fig. 4 Three-layer neural network for viscosity modeling and thermal conductivity.  

 

A neural network of 10 neurons in the hidden layer and one neuron in the output layer for viscosity and 

thermal conductivity models. The number of hidden layer neurons is tentatively determined and given the 

mean maximum squared error to predict the viscosity and thermal conductivity and provide a comparison 

between the neural network and the experimental data. The weights and bias are determined by the 

Levenberg Marquardt algorithm. It should also be noted that the transfer function in the hidden layer of 

the sigmoid function (logsig) and the linear function (purelin) were performed for the outer layer. Figure 3 

and Figure 4 show the mean-squared error for the various data from the viscosity and thermal conductivity 

ratings. If the MSE value for the evaluation data in a particular iteration is increased, it will fail as results 

and this iteration process ends when the best result is presented as output [18]. As shown in the figure 5. 

diagram of the ANN model for thermal conductivity. Figure 6 shows the performance diagram of the ANN 

model for viscosity and Figure 7 compares the experimental results of nanofluid viscosity with data from 

artificial neural network. Figure 8 shows the experimental results of nanofluid thermal conductivity with 

data from artificial neural network. 

 

  

Fig. 5 ANN model performance diagram for 

thermal conductivity 

 

Fig. 6 ANN model performance diagram for 

viscosity 
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Fig. 7 Comparison of experimental results of 

nanofluid thermal conductivity with data ANN 

 

Fig. 8 Comparison of experimental results of 

nanofluid viscosity with data ANN 

 

Based on the modeling performed on the experimental results of engine oil nanofluid, the modeling 

parameters for the best network response are reported in Table 2. The value of regression coefficient is 

0.9989 which is an acceptable value for data modeling. MSE shows for Mean Squared Error and MAE 

shows for Mean Absolute Error, and RC shows for Regression Coefficient. 

Table 2 Results of ANN 

MSE MAE Test 

performance 

Train 

performance 

Valid 

performance 
RC 

5.57e-

06 
0.0041 1.83e-05 3.25e-06 4.47e-06 0.9989 

In order to obtain the Algorithm optimal results of the algorithm in several steps with different values of 

50 members of population and 20 times iterations. As shown in Figure 9 to compare the results of the 

optimization process on the first, fifth, tenth and Pareto optimization fronts. Figure 10 it shows the Pareto 

fronts. Using the optimization obtained, thermal conductivity from 313 to 333 ° C can be used. In each 

generation of optimization, the optimized values are compared to the previous generation and finally the 

best results are presented which shows the accuracy of the performance of the optimization algorithm. 

Optimal points of thermal conductivity and viscosity equivalent to it can be obtained by means of the curve.   

  

Fig. 9 Multi-objective optimization results using 

NSGA II 
Fig. 10 Pareto optimal front 
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To obtain the optimal point pattern with ANN estimation function for maximum thermal conductivity 

coefficient (3) is presented which can be used to obtain the desired minimum viscosity for the specified 

thermal conductivity. 

New Experiment Relation 

Viscosity 3 2
25250 2418 / 7 55 / 325 5 / 8903x x x− += − +  

X = Thermal Conductivity 

(4) 

Norm of Residuals = 0.04123 (5) 

4.   Conclusion 

In the present study, was to optimize nanofluid to reduce viscosity and increase thermal conductivity. The 

optimization was performed by determining the objective functions, experimental viscosity data, thermal 

conductivity of nanofluid and applying ANN. The neural network structure was performed by generating 

temperature input data and volume fraction to determine thermal conductivity and viscosity. After objective 

variables and functions defined in NSGA II method, multi-objective optimization was performed. And the 

viscosity and thermal conductivity solutions are presented on the Pareto front. The results show the highest 

thermal conductivity and the lowest viscosity when the maximum temperature point is 333 ° C and the 

volume fraction is 0 until the 1. Among the results, the points with the highest thermal conductivity and 

the lowest viscosity were selected as the best point. 
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