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A B S T R A CT  

In this paper, the vibrations and dynamic response of an orthotropic thin-walled composite cylindrical 

shell with epoxy graphite layers reinforced with carbon nanotubes under heat shock and heat field 

loading are investigated. the carbon nanotubes were uniformly distributed along the thickness of the 

composite layer. The problem is that at first there is a temperature change due to the thermal field in 

the cylinder and the cylinder is coincident with the thermal field, then the surface temperature of the 

cylinder rises abruptly. Partial derivative equations of motion are coupled to heat equations. The 

differential quadrature method (DQM) is used to solve the equations. In this study, the effects of 

length, temperature, thickness and radius parameters on the natural frequencies and mid-layer 

displacement are investigated. The results show that increasing the outside temperature reduces the 

natural frequency and increases the displacement of the system. Radial displacement results were also 

compared with previous studies and were found to be in good agreement with previous literature. 

Increasing the percentage of carbon nanotubes also increased the natural frequency of the system and 

decreased the mobility of the middle layer. 
 

Keywords: Heat shock, DQM, natural frequency, composite, carbon nanotubes  

1.   Introduction 

Increasing demand for improved product performance comes in many forms, including lower weight, 

higher rigidity and lower costs. the persistence of these demands has made current materials not respond 

to these up-to-date needs. So material scientists are always working to either improve the properties of 

existing materials or produce new materials, for example, new composites that have this property are among 

the investigated objects. One of the structures used widely in various industries is cylindrical shells. In this 

paper, the vibrational Response of composite cylindrical shell reinforced with carbon nanotubes under 

thermal shock load is investigated by DQM method. This loading occurs in many cases on structures, 

including rocket launchers, turbine suddenly stops(trip), space equipment, etc. Changes in temperature 

make two important effects. First, the amount of material is expanded when the temperature rises and 

contracted when cools. This expansion and contraction are usually proportional to the temperature 

variation. The thermal expansion coefficient α is a constant correlation between thermal strain and 

temperature variation relative to a reference temperature. In which there is no strain or thermal stress. The 

second effect relates to the stiffness and strength of the material; many materials become softer, more 

flexible and weaker when heated. Unwanted vibrations in systems result in poor performance, system life, 

or major failures and system disruptions, resulting in huge economic losses. Therefore, initial studies to 

control the vibrations of any system can prevent the occurrence of vibration problems when using the 

system. In this study, the dynamic response and the frequency response of composite cylindrical shells 

under thermal shock and a mild initial thermal field are Studied. One of the first studies in this field is the 

McQuillen, E.J. and Brull [1] paper, by numerical studies They checked the thermoelastic coupling of a thin 

cylindrical shell by using the traditional Gallerican method. In that study, they considered a nonlinear 
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distribution of temperature in the shell thickness, and found that the difference between the coupling and 

non-coupling was about 1%. The coupled thermoelasticity of shells of revolution was studied by Eslami et 

al. [2–4], based on second-order shell theory, and the governing equations including normal stress and strain 

as well as the transverse shear and rotary inertia were considered. Coupled dynamic thermoelastic equations 

of cylindrical thin shells were solved by Hakimelahi and Soltani [5] who used the numerical Galerkin 

method. They assumed variable mechanical and thermal shocks along the cylindrical shell with axial 

displacement and parabolic temperature distribution through thickness. Dynamic equilibrium equations of 

conical shells were obtained by Eslami and Moosavi [6] using a general linear theory which includes normal 

and lateral shear stresses and assuming dependency of strain field on temperature. Thus, semicoupled 

dynamic equations of conical shells were derived and solved by using the Galerkin finite element method. 

Tarn [7] examined the exact solution of thermal and thermal loads on a FGM cylinder. In his research, he 

considered the Yang model as a function of radius. In this study, a precise solution is presented for 

temperature distribution, thermoelastic deformation and stress field for a non-homogeneous thick cylinder. 

Alibeigloo [8] studied the thermoesthetic problem of static deformations in piezoelectric coated cylindrical 

shells. He used Navier's and state space methods to solve ordinary differential equations and the governing 

equations. R. Ansari,and J. Torabi [9] Free vibrations of cylindrical shells made of functional reinforced 

composites with carbon nanotubes under thermal loading and enclosed by elastic substrates have been 

investigated. They have affected the various parameters such as thermal loading, different boundary 

conditions, elastic bedding and geometric conditions Different on the natural frequency of the structure. 

Alibeigloo [10] studied the Elasticity solution of functionally graded carbon nanotube-reinforced. Wang et 

al [11] studied the axisymmetric thermoelastic interactionin a functionally graded thick hollow cylinder by 

an asymptotic approach. H. R. Esmaeili et al. [12] investigated Large amplitude thermally caused vibrations 

of cylindrical shells made of a through-the-thickness FGM. All of the thermo-mechanical properties of the 

FGM shell are considered to be functions of temperature and thickness coordinate. A. Keibolahi et al. [13] 

studied the dynamic buckling of a shallow arch subjected to a transient type of thermal loading by following 

the Budiansky–Hutchinson criterion. M. Javani et al. [14] analyzed nonlinear vibrations of the FGM shallow 

arches subjected to different sudden thermal loads Based on the uncoupled thermoelasticity assumptions. 

The heat equations solved numerically by a hybrid iterative GDQ method and Crank-Nicolson time 

marching scheme. M. Javani et al. [15] investigated large amplitude thermally induced vibrations of an 

annular FGM plate subjected to rapid surface heating. S.A.Mousavi et al [16]  studied the dynamic response 

of the orthotropic composite shell under a mild heat field by undergoing a heat shock. 

2.   Problem Formulation 

Properties of composite material reinforced by carbon nanotube are obtained using the following 

relationship [17]: 

𝐸11𝐶
= 

1
𝑉𝐶𝑁𝑇𝐸11

𝐶𝑁𝑇 + 𝑉𝑚𝐸𝑚   (1) 


2

𝐸22𝐶

=
𝑉𝐶𝑁𝑇

𝐸22
𝐶𝑁𝑇 +

𝑉𝑚

𝐸𝑚
 (2) 


3

𝐺12𝐶

=
𝑉𝐶𝑁𝑇

𝐺12
𝐶𝑁𝑇 +

𝑉𝑚

𝐺𝑚
 (3) 

12𝐶
= 𝑉𝐶𝑁𝑇12

𝐶𝑁𝑇 + 𝑉𝑚𝑚 (4) 

𝜌0𝐶 = 𝑉𝐶𝑁𝑇𝜌0
𝐶𝑁𝑇 + 𝑉𝑚𝜌0

𝑚 (5) 

𝛼11𝐶
= 𝑉𝐶𝑁𝑇𝛼11

𝐶𝑁𝑇 + 𝑉𝑚𝛼𝑚 (6) 

𝛼22𝐶
= (1 + 12

𝐶𝑁𝑇)𝑉𝐶𝑁𝑇𝛼22
𝐶𝑁𝑇 + (1 + 𝑚)𝑉𝑚𝛼𝑚 − 12𝛼11𝐶

 (7) 

In this relationship 𝐸11
𝐶𝑁𝑇 and 𝐸22

𝐶𝑁𝑇 are elastic modulus and 𝐺12
𝐶𝑁𝑇 shear modulus of single-walled 

carbon nanotubes. 1,2 and 3 are the carbon nanotube performance parameters. VCNT and Vm, 

respectively, are the volume fraction of carbon nanotubes and matrices that apply to the VCNT+Vm=1 
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relation. 12
𝐶𝑁𝑇𝑎𝑛𝑑 𝜌0

𝐶𝑁𝑇 are Poisson's ratio and density of carbon nanotubes 𝑚 and 𝜌0
𝑚 are Poisson's ratio 

and density of matrix. In these relationships, 𝛼11
𝐶𝑁𝑇, 𝛼22

𝐶𝑁𝑇 and  m are the thermal expansion coefficients 

of the carbon nanotube and the matrix. 

 Consider a thin cylindrical shell of thickness h and an average radius R in the coordinates (x, Θ, z), as 

shown in figure 1, which z is measured from the midpoint of the cylinder, it is assumed that this The shell 

is on a uniform thermal field, with which it reaches the thermal equilibrium and suddenly it enters a thermal 

shock (this shock can be a sudden increase in temperature at either one of the internal or external surfaces, 

or both), The shell is isolated on its edges and the boundary conditions are considered to be clamped. 

 
Fig. 1: Nano-Composite Cylindrical shell coordinates 

 

In order to obtain the governing equations, a relatively thin cylindrical shell is assumed to be hypothesized. 

The displacement components are based on the first order approximation of the shells as follows [18]: 

(8) 0( , , ) ( , ) ( , )xU x z u x z x  = + Ψ  

(9) 0( , , ) ( , ) ( , )V x z v x z x  = + Ψ   

(10) 0( , , ) ( , )W x z w x =  

 

In these relations, u0, v0 and w0 represent the components of displacement vector of the point on the middle 

of the crust, and Ѱx and ѰΘ represent the rotation of the tangents of the middle surface along the x and Θ 

axes, respectively. Therefore, in the hypothesized theory is just the normal strain εz = 0, the components of 

other normal and shear strains at each point of the cylindrical thickness are obtained as follows [19]: 
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=



Ψ
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= +
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Z θ

1 w v
  ε              

R x R



= − +

  
Due to the axial symmetry of geometry and loading, (∂/ ∂θ = 0(, the number of motion equations for 

dynamic cylindrical shell behavior is reduced in the general case of sanders theory and equations 2 and 5 are 

self-sufficient [20]. The motion equations in this case will be as follows: 

  

(12) 
2 22 2

2 2012 1

11 11 1 1 12 2 2 2

u u 1

x t t

x x
TA Tw

A B at bt I
R x x x Rx

      
+ + − − = +

     
  

(13) ( )
2 2

4 4x x

55 55 12 22 12 2 0 2 1 12 2

w 1 u w w
A A A A B at T bt T I

x R x R xx t

    
+ − + + − + = 
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(14) 
2 22 2

2 2012 1 2

11 11 1 1 55 55 32 2 2 2t

x x

x

TB T Iu w w u
B D bt ct A A I

R x x x x Rx x t

       
+ + − − − −  = +

      
  

To solve thermoelastic coupling problems, it is necessary to solve simultaneously the equations of motion 

and energy equations. 

(15) 0v aij ij ij ijk T c T T  
 

− + =ò   

(16) ( ) ( ) ( )0 1T x,θ,z, t T x,θ, t zT x,θ, t= +   

T1 and T0 are functions that we must obtain from the equation system. The Galerkin method is used to 

obtain two non-dependent thermal conductivity equations of equation (10). by averaging it in the thickness 

z of the shell, assuming a linear distribution in the thickness of the shell given by equation 35, the two 

variables T1 and T0 appear in the energy equations. For a multilayer cylindrical shell under thermal shock 

with axial symmetry and a uniform distribution along x, the energy equation 8 in terms of displacement 

terms is summarized as follows [21]: 

 

(17) 
2 2

θθ

a xx ,x zz ,z xθ ,x xx zz2 2

β T T 1 T
Residual ρcT T β U W β W β V k k

R z R z zx z

    
= + + + + − − +  + +     

  

The two integrals (11) and (12) yield two non-dependent energy equations, using two non-dependent T1 

and T0 functions: 

 

(18) 
( )

 

( ). 1 . 0
z

Residual dz =   

 

(19) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

1 2 1 2 1 1 2 2 1

c 0 c 1 x 0,x x x,x θx θ,x θx 0,x z z x z θ 0

2 3 1 2 1

θ z θ z kx 0,xx kx 1,xx kz 1 i o 0 i o 1

i i 0

1
R T R T R u R R R v R R φ R w

R

1 1 1
R R φ R T R T R T h h T h h h T

R 2R R

h T t h T 0   

+ + +  +  + +  + + +

 + + + − − − + − +

− =  

  

 

And 

 

(20) ( )
 

( ). . 0
z

Residual z dz =   

(21) 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( )

2 3 2 3 2 2 3 3 2

c 0 c 1 x 0,x x x,x θx θ,x θx 0,x z z x z θ 0

3 4 2 3 2

θ z θ z kx 0,xx kx 1,xx kz 1 i o 0 i o 1

i i 0

1
R T R T R u R R R v R R φ R w

R

1 1 1
R R φ R T R T R T h[ h h T h h T

R 2R R

h T t h T ] 0

+ + + + + + + +

 + + + − −

 +

− − − −

− =



  

 

       In these equations, some of the parameters are eliminated due to the axial symmetry (∂) / ∂θ = 0. 

Relationships for the coefficients R𝑗
(k)

are given in the appendix.  As already mentioned, β is the volumetric 

expansion coefficient and k is the conduction coefficients in different directions of the composite. To solve 

the problem, we need to solve a device that contains the equations of motion and energy equations. These 

equations are in the partial derivative (pde), that is, the function x and t. To solve the equations, we need to 

write them to the finite element matrix form Mẍ + Cẋ + Kx = F Matrix form can be used in a variety of 

ways, including the Rang Kuta method. The steps in converting the pde equations into the matrix form of 
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the finite element are as follows. First, using the Galerkin method, we write the equations in a weak form, 

and then write them in a common matrix. 

The initial conditions of the problem are considered zero: 

 

(22) 
𝑢0(𝑥, 0) = 𝑤0(𝑥, 0) = Ѱ𝑥0(𝑥, 0) = 0 

 

(23) 

∂u0(x, 0)

∂t
=

∂w0(x, 0)

∂t
=

∂Ѱx0(x, 0)

∂t
= 0 

 

 

final form of the ode's equations is as follows: 

 

(24) 

−
A11(mπ)2

2L
Um +

A12(mπ)

2R
Wm −

B11(mπ)2

2L
Ѱx − at1

2
(mπ)

2
T0m − bt1

2
(mπ)

2
T1m

−
LI1

2
Üm(t) −

LI2

2
Ѱ̈xm(t) = 

 

 

(25) 

−
RA12(mπ)

2
Um +

A22L

2
Wm −

RA55(mπ)

2
Ѱxm −

Rat2
4L

2
T0m −

Rbt2
4L

2
T1m

−
A55(mπ)2

2L
Wm −

I1L

2
Ẅ = 0 

 

 

(26) 

−
B11(mπ)2

2L
Um −

D11(mπ)2

2L
Ѱxm −

A55(mπ) 

2R
Wm −

a45L

2
Ѱxm −

LI2

2
Üm −

LI3

2
Ѱ̈m

−
bt1

2(mπ)

2
T0m −

ct1
2(mπ)

2
T1m = 0 

 

(27) 

Rc
(1)

L

2
T0̇ +

Rc
(2)

L

2
T1̇ +

Rx
(1)

(mπ)

2
u̇ +

Rx
(2)

(mπ)

2
Ѱx

̇ +
Rϴ

(1)
L

2R
w0̇ −

Rkx
(1)

(mπ)2

2L
T0

−
Rkx

(2)(mπ)2

2L
T1 +

Rkz
(1)

L

2R
T1 −

(hi − ho)L

2
T0 +

(hi − ho)hL

2
T1 − [hiTi(t)

− h0T∞]
L

mπ
cos (

mπ

L
x)]

L
0

= 0 

 

(28) 

Rc
(2)

L

2
T0̇ +

Rc
(3)

L

2
T1̇ +

Rx
(2)

(mπ)

2
u̇ +

Rx
(3)

(mπ)

2
Ѱx

̇ +
Rϴ

(2)
L

2R
w0̇ −

Rkx
(2)(mπ)2

2L
T0

−
Rkx

(3)(mπ)2

2L
T1 +

Rkz
(2)

L

2R
T1 −

h(hi − ho)L

2
T0 +

(hi − ho)hL

2
T1 + [hiTi(t)

− h0T∞]
L

mπ
cos (

mπ

L
x)]

L
0

= 0 

 

Now, the equations can be written in the form of the matrix Mẍ + Cẋ + Kx = F, and this equation can be 

solved by different methods. In this study, the DQM methods has been used. 

3.   Solution by DQM Method 

DQM is one of the numerical methods in which the weighted coefficients of the governing differential 

equations are converted into first-order algebraic equations. Thus, at each point, the derivative will be 

expressed as a linear sum of the weighting coefficients and the function values at that point and the other 
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points in the domain and in the coordinate axis. In general, in these methods, the one-dimensional function 

derivative is defined as follows [22-23]: 

(29) ( )( )

1

 ,  1,2,..., 1
i

n N
n

ij jn x x
j

d f
C f x n N

dx =
=

= = −
 

Where the f(x) is desired function Cij is derivative weights and N is the number of grid points. The 

relation (22) is called the quadratic differential. Two important factors in this method are the selection of 

sample points and weighting coefficients. 

4.   Select sample points 

There are several ways to select sample points. The simplest is the choice of dividing the domain into 6 

points with equal distance that the experience shown will have no accurate answer. Using orthogonal 

polynomial roots is one of the common methods in selecting sample points with uneven distances. The 

roots of Chebysno polynomials are used extensively in engineering issues and produce good results. This 

distance is expressed as follows [24]: 

 (30) 

1
1 cos ,   1,2,...,

2 1

1
1 cos ,    1,2,...,

2 1

i

j

L i
x i N

N

W j
y j M

M





−  
= −  =  −  

−  
= −  =  −  

 

Various methods have been proposed to obtain the weighting coefficient matrix. In these methods, the 

function-function is assumed to be known. By deriving this function and satisfying the equality, you gain 

weight coefficients. This hypothetical function used to obtain weight coefficients is called the test 

function.in order to have no constraint on the number of grid points used for the approximation and the 

weighting coefficients, the Lagrange interpolated polynomials fi(x) are expressed by: 

1

( )
( ) , 1,2,...,

( ) ( )i i

L x
g x i N

x x L x
= =

−
 

(31) 

Where 𝐿(𝑥) = ∏ (𝑥 − 𝑥𝑗)𝑁
𝑗=1  ,also L1(x) is a derivative of Lagrange's orthogonal polynomial function of 

order N and is defined as 𝐿(𝑥𝑖) = ∏ (𝑥𝑖 − 𝑥𝑗)𝑁
𝑗=1 , By substituting Eq. in  Eq  one can find 

 
(1) 1

1

( )

( ) ( )

i
ij

i j j

L x
C

x x L x
=

−
 

For ij  ,i,j=1,2,…,N  

(32) 

 
(1) 1

1,ij ijj j i
C C

= 
= −  For i=j ,i,j=1,2,…,N 

The vibration modes of composite circular cylindrical shells are characterized by n, the number of 

circumferential waves and m, the number of axial waves. A general expression for the displacement 

components in any mode may be written in the following form: 

𝑢(𝑥. 𝜃. 𝑡) = 𝑈(𝑥) cos(𝑛𝜃) sin (𝜔𝑡)  

 

(33) 
𝑣(𝑥. 𝜃. 𝑡) = 𝑉(𝑥) sin(𝑛𝜃) sin (𝜔𝑡) 

𝑤(𝑥. 𝜃. 𝑡) = 𝑊(𝑥) cos(𝑛𝜃) sin (𝜔𝑡) 

Ѱ𝑥(𝑥. 𝜃. 𝑡) = Ѱ𝑥(𝑥) cos(𝑛𝜃) sin (𝜔𝑡) 

Ѱ𝜃(𝑥. 𝜃. 𝑡) = Ѱ𝜃(𝑥) sin(𝑛𝜃) sin (𝜔𝑡) 

By writing the equations of motion (17-21) by application of differential quadrature method (DQM) the 

following set of equations are obtained: 

 

 

(34) 

−
A11(mπ)2

2L
Um +

A12(mπ)

2R
Wm −

B11(mπ)2

2L
Ѱx − at1

2
(mπ)

2
T0m − bt1

2
(mπ)

2
T1m

−
LI1

2
∑ 𝐴𝑖𝑗

(2)

𝑁

1

Um(t) −
LI2

2
∑ 𝐴𝑖𝑗

(2)
Ѱ𝑥𝑚

𝑁

1

(t) = 0 
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(35) 

−
RA12(mπ)

2
Um +

A22L

2
Wm −

RA55(mπ)

2
Ѱxm −

Rat2
4L

2
T0m −

Rbt2
4L

2
T1m −

A55(mπ)2

2L
Wm

−
I1L

2
∑ 𝐴𝑖𝑗

(2)

𝑁

1

W = 0 

 

(36) 

−
B11(mπ)2

2L
Um −

D11(mπ)2

2L
Ѱxm −

A55(mπ) 

2R
Wm −

a45L

2
Ѱxm −

LI2

2
∑ 𝐴𝑖𝑗

(2)

𝑁

1

Um

−
LI3

2
∑ 𝐴𝑖𝑗

(2)

𝑁

1

Ѱm −
bt1

2(mπ)

2
T0m −

ct1
2(mπ)

2
T1m = 0 

 

(37) 

Rc
(1)

L

2
∑ 𝐴𝑖𝑗

(1)

𝑁

1

T0 +
Rc

(2)
L

2
∑ 𝐴𝑖𝑗

(1)

𝑁

1

T1 +
Rx

(1)
(mπ)

2
∑ 𝐴𝑖𝑗

(1)

𝑁

1

u +
Rx

(2)
(mπ)

2
∑ 𝐴𝑖𝑗

(1)

𝑁

1

Ѱ𝑥

+
Rϴ

(1)
L

2R
∑ 𝐴𝑖𝑗

(1)

𝑁

1

w0 −
Rkx

(1)(mπ)2

2L
T0 −

Rkx
(2)(mπ)2

2L
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(38) 
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L
x)]
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= 0 

 

where Aij represents the weighting coefficient of order r corresponding to ith grid point. 

The boundary conditions for a simply-supported shell are given as: 

u = v = w = Mxx = Ѱ𝜃 = 0     at x =0 and x = L 

clamped-free circular cylindrical shell. The boundary conditions for this case are given as: 

u = v = w = Ѱx = Ѱ𝜃 =0   at x = 0 

u = v = w = Mxx = Ѱ𝜃 = 0        at x = L 

And for clamped-clamped boundary conditions: 

u = v = w = Ѱx = Ѱ𝜃 =0    at x =0 and x = L 

5.   Numerical Results and Discussion 

 In this section of the work, the results of this study are compared with those of others published in 

prestigious journals. for this purpose, we compared the results of the radial motion of the intermediate layer 

with the results of the Jeng-Shian Chang et al [18], which can be seen in the figures 2-4 for the shells of 

different fiber angles. In all of these cases, the shell is considered as a double-headed. As you can see, the 

results are very close to the results of Chang et al [18] work. All results are obtained using the properties 

listed in the Table 1. Otherwise, the values that have been changed in the description of the image are listed. 
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Fig. 2: Comparison of the interlayer displacement for the fiber angle (45, - 45, 45, -45) with ref [6] 

 

 
Fig. 3: Comparison of the interlayer displacement for the fiber angle (0,90,0,90) with ref [6] 

 

 
Fig. 4: Comparison of the interlayer displacement for the fiber angle (0, 0, 0, 0) with ref [6] 
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Table 1: Geometry and material properties of composite shell 

 

Parameter value Parameter 

25.4 cm Cylindrical length (L) 

50 cm Middle layer radius (R) 

0.0635cm Thickness of each layer (H) 

(-45,45,-45,45) Fiber angle 

137.9 Gpa Young's modulus for direction 1 (E11) 

8.96 Gpa Young's modulus for direction 2and3(E22=E33) 

7.1 Gpa Shear modulus) G12=G13( 

3.447 Gpa Shear modulus (G23) 

0.3 Poisson's ratio (ʋ) 

46.2×10-3 J/cm s K Heat transfer coefficient in direction 1 (K11) 

7.2×10-3 J/cm s K Heat transfer coefficient in direction 2and3(K22=K33) 

16.35 J/cm2 s Thermal shock load(ft) 

100 oC Initial temperature change (Δϴ) 

 

The properties of carbon nanotubes are presented in Table 2 and the values of carbon nanotube 

performance parameters are presented in Table 3. 

Table 2: Material properties of single-walled carbon nanotube(10,10)(12
𝐶𝑁𝑇 = 0.175)[17]. 

 

Temperature (K) 700 500 300 

𝐸11
𝐶𝑁𝑇 (TPa) 5.4744 5.5308 5.6466 

𝐸22
𝐶𝑁𝑇 (TPa) 6.8641 6.9348 7.0800 

𝐺12
𝐶𝑁𝑇 (TPa) 1.9644 1.9643 1.9445 

11
𝐶𝑁𝑇(10-6/K) 4.6677 4.5361 3.4584 

2
𝐶𝑁𝑇(10-6/K) 4.8943 8.0189 5.1682 

 

Table 3: Efficiency parameters for different values of VCNT [17]. 

 

3 2 1 VCNT 

0.934 0.934 0.149 0.11 

0.941 0.941 0.150 0.14 

1.381 1.381 0.149 0.17 

 

The effect of change in shell thickness on the displacement of the middle layer and frequency is shown in 

Figures 5 and 6. 

https://journals.aijr.in/index.php


31 
 

ISSN: 2582-2365 
Available online at Journals.aijr.in 

Analytical Investigation of the Vibrational and Dynamic Response of Nano-Composite Cylindrical Shell…………. 

 
Fig.5: Changes in the radial displacement of the interlayer in different thicknesses of the layers 

 

 
Fig. 6: Changes in natural frequencies by changing the thickness of the layers 

 

In Figures 7 and 8, the length of the cylindrical length parameter is investigated. It is seen that in Figure 7, 

with increasing length of the cylinder, the displacement of the middle layer is increased, as can be seen in 

Figure 8, by increasing the length of the cylinder The natural frequency has decreased. 

 

 
Fig. 7: Change in the radial displacement of the middle layer by changing the length of the cylinder 
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Fig. 8: Change in natural frequencies by changing the length of the cylinder 

 

Another important geometric parameter in the cylindrical shell is the radius of the intermediate layer, which 

in Figures. 9 and 10, respectively, deals with the effects of the middle layer radius on the displacement of the 

middle layer and the frequency. By increasing the radius, the displacement Dropped. In Figure 10, it is also 

observed that the natural frequency increased by increasing the radius. 

 

 
Fig. 9: Changes in the radial displacement of the intermediate layer by changing the radius of the cylinder 

 
Fig. 10: Change in natural frequencies by changing the radius of the cylinder 

https://journals.aijr.in/index.php


33 
 

ISSN: 2582-2365 
Available online at Journals.aijr.in 

Analytical Investigation of the Vibrational and Dynamic Response of Nano-Composite Cylindrical Shell…………. 

In the next study, Figure 11 shows the effect of different angles of the fiber in the dynamic response. 

 
Fig. 11: Changes in the radial displacement of the intermediate layer by changing the  Fiber angle 

The basic parameter to be considered in this study is the effect of the shock load (ft) on the range of vibration 

displacement. The result of this study is shown in Figure 12. 

 

 
Fig. 12: Changes in the radial displacement of the intermediate layer with a change in thermal shock 

Figures 13 and 14 show a change in the natural frequency and displacement of the middle layer by changing 

the thermal field temperature. As the temperature rises, the material becomes softer so that the displacement 

rises, but due to the initial stresses it causes that the natural frequency decreases. Figure 13 shows that the 

field does not have much effect on the fundamental frequency (first frequency), but the increase of the field 

affects the subsequent frequencies and reduces the frequency. 

 

 
Fig. 13: Changes in natural frequencies by changing the temperature of the initial thermal field 
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In Figure 14 it is seen that the existence of a mild initial field (up to 100 degrees) does not have much effect 

on the dynamic response but will reduce the natural shell frequencies (especially higher frequencies). 

However, the thermal field does not have a significant effect on the dynamic response in the short time, but 

after a while it reduces the hardness matrix values and will reduce the frequency and increase the range of 

displacement. 

 
Fig. 14: Changes in the radial displacement of the intermediate layer with a change in Thermal field 

Boundary conditions are clamped as default. You can see the effect of other boundary conditions on the 

fundamental frequency of the shell in Figure 15. 

 
Fig. 15: Variation of the fundamental frequency parameter with Ratio of length to radius for different 

boundary conditions 

The volume percentage of carbon nanotubes is another important parameter of this study, which is its effect 

on the fundamental frequency in Figure 16. increasing the volume ratio of carbon nanotubes increases the 

natural frequency of the cylindrical shell 

 
Fig. 16: Variation of the fundamental frequency parameter with the CNT volume fraction 
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6.   Conclusions 

In this paper, the dynamics and vibrational responses of cylindrical shells of thin-walled composite materials 

under the primary thermal field and thermal shock were investigated. The influence of parameters such as 

radius, cylindrical length, shell thickness, temperature of the field and on the range of radial displacement 

of the middle layer and Natural frequencies were dealt with. Increasing the volume ratio of carbon 

nanotubes increases the natural frequency of the cylindrical shell. As the temperature increases, the natural 

frequency of the sheet decreases .By examining the effects of the heat field and thermal shock, it was found 

that a mild heat field (far away from the melting point of the composite matrix) does not have an effect on 

the dynamic response but reduces the natural frequency, especially higher frequencies. But the effect of 

increasing the thermal shock on the increase in displacement is considerable, but with transient effects it 

has no effect on natural frequencies.  
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