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ABSTRACT

The focus of this paper is on solving Hallén’s integral equation for a diploe antenna of
perfectly conducting material. A special representation of orthogonal triangular basis
functions is used to implement an effective numerical method for solving this equation.
The Hallén’s formulation is treated in detail and illustrative computations are given for
current distributions and radiation patterns.
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1 Introduction

Integral equation approach has a wide variety of applications in material science. Some instances
of such applications are reviewed here. Chai et al. [1] studies the stress intensity factors and their
correlations with bimaterial parameters for the interface planar cracks by hypersingular integral
equations. A new bimaterial parameter γ is defined, and the correlations of the stress intensity
factors of interface planar crack with two parameters ε and γ are proved. The relative displacement
fundamental function is proposed based on the crack’s peripheral equation. In [2], a combined
Laplace transform and boundary element method is used to find numerical solutions to problems
of another class of anisotropic functionally graded materials which are governed by a variable co-
efficients parabolic equation. A transformation is used to reduce the variable coefficients equation
to a constant coefficients equation, which is then transformed into a boundary-only integral equa-
tion. In [3], the new system of hypersingular integral equations (HSIEs) for the thermally insu-
lated inclined cracks and thermally insulated circular arc cracks subjected to remote shear stress in
bonded dissimilar materials is formulated by using the modified complex potentials (MCPs) func-
tion method with the continuity conditions of the resultant force, displacement and heat conduction
functions. This new system of HSIEs is derived from the elasticity problem and heat conduction
problem by using crack opening displacement (COD) function and temperature jump along the
crack faces. In [4], the convergence of an iterative method called Adomian decomposition method
is analyzed to solve the Fuzzy Volterra Integral Equations (FVIE) with time lag, the uniqueness and
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convergence of the method are equivalent. In [5], a spectral formulation of the boundary integral
equation method for antiplane problems is presented. The boundary integral equation method re-
lates the slip and the shear stress at an interface between two half-planes. It involves evaluating a
space-time convolution of the shear stress or the slip at the interface. In the spectral formulation, the
convolution with respect to the spatial coordinate is performed in the spectral domain. This leads
to greater numerical efficiency. In [6], the static interaction between an eccentricly loaded rectan-
gular rigid foundation and layered transversely isotropic soils is investigated. Firstly, the solution
of the layered transversely isotropic soils is derived using the analytical layer element method. Af-
ter decomposing the deformation forms of the rigid rectangular foundation under eccentric loads,
the dual integral equations are established through mixed boundary conditions. Then, the Jacobi
orthogonal polynomial and the Bessel function are employed to solve the above dual integral equa-
tions, and the static response solution of the rigid rectangular foundation subjected to eccentric
loads is obtained through superposition.

Hallén’s equation is a first kind Fredholm integral equation [7]. For solving integral equations
of the first kind, several numerical approaches have been proposed [8]. These numerical methods
often use the basis functions and transform the integral equation to a linear system that can be
solved by direct or iterative methods [8]. It is important in these methods to select an appropriate
set of basis functions so that the approximate solution of integral equation has a good accuracy.

In this paper, we use a special representation of orthogonal triangular basis functions to imple-
ment a numerical method for solving Hallén’s integral equation for a dipole antenna of perfectly
conducting material. Using this method, the integral equation reduces to a linear system of alge-
braic equations. Solving this system gives an approximate solution for the problem.

First of all, we review the special representation of triangular functions. Then, a numerical
method is formulated for solving Fredholm integral equation of the first kind based on the men-
tioned basis functions. Finally, Hallén’s integral equation is solved via the presented method, and
illustrative computations for current distributions and radiation patterns are given to complete the
procedure.

2 Triangular functions

A special representation of triangular functions has been introduced by A. Deb et al. [9] as a set of
orthogonal functions.

Two m-sets of triangular functions (TFs) are defined over the interval [0,T) as [9]

T1i(t) =

{
1 − t−ih

h , ih ≤ t < (i + 1)h,
0, otherwise,

T2i(t) =

{
t−ih

h , ih ≤ t < (i + 1)h,
0, otherwise,

(1)

where, i = 0, 1, . . . ,m − 1, with a positive integer value for m. Also, consider h = T/m, and T1i as
the ith left-handed triangular function and T2i as the ith right-handed triangular function.
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These functions are orthogonal [9], so∫ 1

0
T1i(t)T1 j(t) dt =

{
h
3 i = j,
0 i , j,∫ 1

0
T2i(t)T2 j(t) dt =

{
h
3 i = j,
0 i , j.

(2)

Now, consider the first m terms of left-handed triangular functions and the first m terms of
right-handed triangular functions and write them concisely as m-vectors

T1(t) = [T10(t),T11(t), . . . ,T1m−1(t)]t,

T2(t) = [T20(t),T21(t), . . . ,T2m−1(t)]t,

(3)

where, T1(t) and T2(t) are called left-handed triangular functions (LHTF) vector and right-handed
triangular functions (RHTF) vector, respectively.

The expansion of a function f (t) with respect to TFs, may be compactly written as

f (t) ≃
m−1∑
i=0

ciT1i(t) +
m−1∑
i=0

diT2i(t)

= cT T1(t) + dT T2(t),

(4)

where, ci and di are constant coefficients with respect to T1i and T2i for i = 0, 1, . . . ,m − 1,
respectively.

Above coefficients can be determined by sampling f (t) such that

ci = f (ih),

di = f ((i + 1)h), for i = 0, 1, . . . ,m − 1.
(5)

But the optimal representation of f (t) can be obtained if the coefficients ci and di are determined
from the following two equations [9]:∫ (i+1)h

ih
f (t)T1i(t) dt = ci

∫ (i+1)h

ih
[T1i(t)]2 dt + di

∫ (i+1)h

ih
[T1i(t)T2i(t)] dt,∫ (i+1)h

ih
f (t)T2i(t) dt = ci

∫ (i+1)h

ih
[T1i(t)T2i(t)] dt + di

∫ (i+1)h

ih
[T2i(t)]2 dt.

(6)

Note that∫ (i+1)h

ih
[T1i(t)T2i(t)] dt =

h
6
. (7)

From Eqs. (6) and Eq. (7) coefficients ci and di for i = 0, 1, . . . ,m − 1 can be easily computed.
It is clear that for piecewise linear functions, optimal and non-optimal representations are iden-

tical.
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3 Numerical method to solve first kind Fredholm integral equation
using triangular functions

In this section, the triangular functions are used for formulation of a numerical method to solve
Fredholm integral equation of the first kind. For this purpose, the definition of triangular functions
is extended over arbitrary interval [a, b).

Consider the following Fredholm integral equation of the first kind:∫ b

a
k(s, t)x(t) dt = y(s), (8)

where, k(s, t) and y(s) are known functions but x(t) is unknown. Moreover, k(s, t) ∈ L2([a, b) ×
[a, b)) and y(s) ∈ L2([a, b)). Approximating the function x(s) with respect to triangular functions
by (4) gives

x(s) ≃ cT T1(s) + dT T2(s), (9)

such that the m-vectors c and d are TFs coefficients of x(s) that should be determined.
Substituting Eq. (9) into (8) follows:

cT
∫ b

a
k(s, t)T1(t) dt + dT

∫ b

a
k(s, t)T2(t) dt ≃ y(s). (10)

Now, let si, i = 0, 1, . . . , 2m − 1 be 2m appropriate points in interval [a, b); putting s = si in
Eq. (10) follows:

cT
∫ b

a
k(si, t)T1(t) dt + dT

∫ b

a
k(si, t)T2(t) dt ≃ y(si),

i = 0, 1, . . . , 2m − 1,
(11)

or

m−1∑
j=0

[
c j

∫ b

a
k(si, t)T1 j(t) dt + d j

∫ b

a
k(si, t)T2 j(t) dt

]
≃ y(si),

i = 0, 1, . . . , 2m − 1.

(12)

Now, replace ≃ with =, hence Eq. (12) is a linear system of 2m algebraic equations for 2m
unknown components c0, c1, . . . , cm−1 and d0, d1, . . . , dm−1. So, an approximate solution x(s) ≃
cT T1(s) + dT T2(s), is obtained for Eq. (8).

4 Hallén’s integral equation modeling for a dipole antenna of per-
fectly conducting material

In this section, we focus on solving Hallén’s equation.
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A practical center-fed dipole antenna of perfectly conducting material usually consists of a pair
of tubular perfect conductors of radius a aligned in tandem so that there is a small feeding gap at
the center [7], as shown in Fig. 1. The total length is 2l. A voltage is applied across the gap, often
by means of a two-wire transmission line. The resulting current distribution on the pair of tubular
conductors gives rise to radiating field.

Z=0

Z

ll

2δ

2a

Figure 1: Cylindrical dipole antenna.

4.1 Hallén’s Formulation

Referring to Fig. 1, let us assume that the length of the cylinder is much larger than its radius
(2l ≫ a) and its radius is much smaller than the wavelength (a ≪ λ), so that the effects of the
end faces of cylinder can be neglected. Therefore, the boundary conditions for a wire made of a
material with infinite conductivity are those of vanishing total tangential E fields on the surface of
the cylinder and vanishing current at the ends of the cylinder

[
Iz(z = ±l) = 0

]
[10]. For convenience,

we assume that a constant voltage Vi is applied at the input terminals of the dipole, i.e., the delta-gap
excitation. Under these conditions, the final form of the current integral equation is [7, 10]

∫ l

−l

e− jkr

4πr
Iz(z′) dz′ = C cos kz −

jωϵ0
2k

sin k|z|, (13)

where
r = [a2 + (z − z′)2]1/2;
Iz(z), is current distribution on the cylinder;
k = 2π

λ , is free space wave number;
ϵ0 = 8.854 × 10−12 F/m, is free space permittivity.
Eq. (13) is referred to as Hallén’s integral equation. Solving this equation gives the current

distribution along the dipole. Since, in this problem, the current distribution Iz(z) is an even func-
tion [7], Hallén’s integral equation can be rewritten in the form

∫ l

0
G(z, z′)Iz(z′) dz′ = C cos kz −

jωϵ0
2k

sin kz, (14)
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in which
G(z, z′) = e− jkr

4πr +
e− jkr′

4πr′ ;
r = [a2 + (z − z′)2]1/2;
r′ = [a2 + (z + z′)2]1/2;
z ∈ [0, l].

4.2 Solving Hallén’s integral equation via presented approach

Now, we have the necessary tools for solving Hallén’s integral equation. Applying the proposed
method to solve Hallén’s equation gives the current distribution along the dipole. It should be
mentioned that for calculating the unknown coefficient C that appears on the right hand side of
Eq. (14), the number of match points should be 2m + 1 instead of 2m. After calculating the current
distribution we can determine the radiation pattern of dipole. The radiation pattern can be obtained
of the following equation [11]:

f (θ) =
∫ l

−l
Iz(z′)e jkz′ cos θ dz′, (15)

where, θ is observation angle. Referring to Fig. 1, we can consider θ as the θ-coordinate of spherical
coordinate system.

Current distributions along the dipole for 2l = 0.4λ, λ, 1.5λ (with a specific value for a), and for
z > 0 have been calculated and given in Figs. 2–4. The normalized radiation patterns as a function
of θ are given in Figs. 5–7. Also, the radiation patterns in polar system are given in Figs. 8–10.
Finally, figures 11–13 give the three-dimensional radiation patterns.
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Figure 2: Current distribution for 2l = 0.4λ a = 0.0001l.
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Figure 3: Current distribution for 2l = λ and a = 0.00001l.
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Figure 4: Current distribution for 2l = 1.5λ and a = 0.001l.
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Figure 5: Normalized radiation pattern for 2l = 0.4λ and a = 0.0001l.
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Figure 6: Normalized radiation pattern for 2l = λ and a = 0.00001l.
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Figure 7: Normalized radiation pattern for 2l = 1.5λ and a = 0.001l.
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Figure 8: Normalized radiation pattern in polar system for 2l = 0.4λ and a = 0.0001l.
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Figure 9: Normalized radiation pattern in polar system for 2l = λ and a = 0.00001l.
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Figure 10: Normalized radiation pattern in polar system for 2l = 1.5λ and a = 0.001l.
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Figure 11: Three-dimensional radiation pattern for 2l = 0.4λ and a = 0.0001l.
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Figure 12: Three-dimensional radiation pattern for 2l = λ and a = 0.00001l.
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Figure 13: Three-dimensional radiation pattern for 2l = 1.5λ, a = 0.001l and z > 0.
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5 Conclusion

The presented method in this paper was applied to solve Hallén’s integral equation for a dipole an-
tenna of perfectly conducting material using a special representation of triangular functions. This
method reduces the Hallén’s integral equation to a linear system of algebraic equations. The prob-
lem was described in detail, and illustrative computations were given for current distributions and
radiation patterns. The advantage of the proposed method is its flexibility to be generalized for
applying in analysis of other radiating structures. Moreover, the numerical results confirm its com-
putational efficiency as an integral equation approach. At last, a similar formulation can be applied
in solution of Pocklington’s integral equation for analysis of radiating bodies of perfectly conduct-
ing material.
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