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AB S T R A CT  

We have investigated the existence and stability of the libration points in the circular restricted 

three body problem with the variation of all the masses (primaries and infinitesimal body) 

with time. We have used the Meshcherskii transformation for finding the autonomized 

equations of motion and found at most nine libration points. We have drawn the zero velocity 

curves and Poincare surface of sections for the different values of parameter k. Finally, we 

have checked the stability and found that all the libration points are unstable. 
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1 Introduction 

In the present age, the restricted problem is the 

common model in the celestial mechanics with 

different perturbations as different shapes of the 

primaries, radiation factor, Pointing-Robretson 

Drag, Variable masses, resonance, relativistic 

effects etc. Many mathematicians and 

astronomers have studied these models and 

investigated about their stability, chaos, fractals, 

periodic orbits, non-linear oscillations etc. Jeans 

[1] studied the two body problem with variable 

mass. Meshcherskii [2, 3] investigated on the 

mechanics of bodies with variable mass. 

Szebehely [4] given the theory about the stability 

and periodic orbits around the libration points in 

his book "Theory of Orbits". Bhatnagar [5] 

studied the periodic orbits of collision in the 

restricted problem of three bodies in a three-

dimensional coordinate system. Simmons [6] 

studied about the stability of the restricted three 

body problem with radiation pressure. Singh [7-

10] studied about the stability of the restricted 

three body problem with the perturbations as 

variable mass, radiation pressure and Coriolis and 

centrifugal forces. Zhang [11] studied about the 

photo gravitational restricted three body problem 

with variable mass. Abouelmagd [12, 13] studied 

the effect of oblateness in the perturbed 

restricted three body problem and also with 

variable mass. Shalini [14] investigated the 

existence and stability of the libration point L4 in 

the R3BP, when the smaller primary is a 

heterogeneous axis symmetric body with N 

layers. Abdullah [15] investigated the stability of 

the Lagrangian solutions in the photo 

gravitational circular restricted four-body 
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problem with the effect of oblateness and 

variable mass. Mittal [16] investigated the stability 

of the Lagrangian solutions for the restricted 

four-body problem with variable mass. Taking 

inspiration from all these models, we have 

decided to study about the existence and stability 

of the libration points in the circular restricted 

three body problem in which the masses of the 

primaries as well as the mass of the infinitesimal 

body vary with time. We have studied our 

problem in various sections. In the first section, 

we have introduced the problem. In the second 

section, we have evaluated the equations of 

motion of the infinitesimal variable mass in the 

cartesian form and in the autonomized form. In 

the third section, we have shown the libration 

points (collinear, triangular and coplanar points), 

zero velocity curves and Poincare surface of 

sections for the different values of the 

parameters. In the fourth section, we have shown 

the stability of the libration points. And finally in 

the fifth section, we have concluded the problem. 

Our problem has many application in this space 

age particularly in the field of Astrodynamics, 

Astronomy and Astrophysics. 

2 Equations of Motion 

Let the three masses m1, m2 and m varies with 

time be the masses of the primaries and 

infinitesimal body respectively. The primaries are 

revolving in the circular orbits around their 

center of mass which is considered as origin. The 

line joining these primaries is taken as x-axis and 

the perpendicular line of x-axis and passing 

through the origin is taken as y-axis. The line 

through the origin and perpendicular to the plane 

of motion of the primaries is taken as z-axis. Let 

us consider the synodic coordinate system, 

initially coincident with the inertial coordinate 

system, with angular velocity w about z-axis. 

Using the procedure of Abdullah [15], we can 

write the equations of motion of the infinitesimal 

variable mass m in the circular restricted three 

body problem when the variation of mass is non-

isotropic and originates from one point as 

(x y) (x 2 y) ,x

m

m
       

( ) ( 2 ) ,y

m
y x y x

m
       

,z

m
z z

m
                      (1) 

where, 
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primaries. 

 Using Meshcherskii [3] transformation  
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where 0 10 20 0, , , , , ,ma b c    are constants. 

We transform the system (1) to the 

autonomous form 
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Dash (') is the differentiation w.r.to  . Taking 

unit of mass, distance and time at initial time t0 

such that 

0 12 0 0 1, 1, 1,a (constant)G t b       

So that 1 ,k   where k is constant of a 

particular integral of Gylden-Meshcherskii 

problem and consequently G = k. Introducing 

the mass parameter  expressed as 

 10 20

0 0

1
1 , ,0 ,

2

 
  

 
      

where  is the ratio of the mass of the primaries 

to the total mass of the primaries. Finally, the 

autonomized system (2) becomes 
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3 Locations of the Equilibrium Points of 

the Autonomized System 

The equilibrium points with the variable masses 

are obtained from the solution of the equations 

0, 0, 0,         
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3.1 Tables for Equilibrium Points 

We have given all the Lagrangian points for the 

values of  = 0.019, α1 = 0.2, 0.4, 0.9 and k = 0.4, 

0.7, 1, 10, 100 in the Table 1- 6 and also in the 

Figures 1-10. From Table 1-3, we have given the 

values in     plane and from Table 4-6, we 

have given the values in the    plane. 

Correspondingly from Figure 1-5, we have 

shown the libration points for the different five 

values of k in the    plane and from Figure 6-

10, we have shown the libration points for the 

different five values of k in the    plane. 

 

Table 1: Values of equilibrium points at  = 0.019, α1 = 0.2. 

k ( ( , )      Number 

of 

points 

0.4 (−0.019,0),(0.81989109, 0.84389109), (−0.83389109,−0.84389109), (0.98554574, 0), 

(1.078554574,−0.13), (−0.615389109, 0.6001389109), (0.612389109,−0.579109) 

7 

0.7 (−0.019,0),(0.74989109,0.7789109), (−0.76389109,−0.78389109), (0.98554574, 0), 

(1.12394, −0.112), (−0.66389109,0.62389109), (0.662389109,−0.599109), 

(0.8079985,−0.059956), (0.874574,−0.27432) 

9 

1 (−0.019,0), (0.71989109,0.7689109), (−0.73389109,−0.77389109), (0.98554574,0), 

(1.14394, −0.091), (−0.68389109,0.633389109), (0.695389109,−0.599109), 

(0.8079985,−0.039956), (0.867574,−0.3432) 

9 

10 (−0.019,0),(0.60689109,0.791689), (−0.4789109,−0.88138), (0.98554574,0), 

(1.175394,−0.016), (−0.8615109,0.5129), (0.8079985,−0.0091) 

7 

100 (−0.019,0), (0.539109,0.828689), (0.4689109,−0.87138), (0.98554574,0), 

(1.175394,0), (−0.9615109,0.2976), (0.8079985,0) 

7 
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Table 2: Values of equilibrium points at  = 0.019, α1 = 0.4. 

k ( , )   Number 

of points 

0.4 (−0.019,0), (0.94989109,0.96389109), (−0.96389109,−0.96389109), (0.98554574,0), 

(1.048554574,−0.101), (−0.54389109,0.5189109), (0.52389109,−0.519109) 

7 

0.7 (−0.019,0), (0.7999109,0.816109), (−0.81589109,−0.8169109), (0.98554574,0), 

(1.0794,−0.112), (−0.59389,0.5789109), (0.582389109,−0.569109) 

7 

1 (−0.019,0).(0.7599109,0.7816109), (−0.7689109,−0.7879109), (0.98554574,0), 

(1.099794,−0.1112), (−0.626783,0.5989109), (0.6199109,−0.579109), 

(0.8189794,−0.12), (0.837794,−0.182) 

9 

10 (−0.019,0), (0.62689109,0.771689), (−0.599109,−0.818918), (0.98554574,0), 

(1.175394,−0.0219), (−0.7715109,0.6129), (0.8079985,−0.0091) 

7 

100 (−0.019,0), (0.539109,0.828689), (0.4689109,−0.87138), (0.98554574,0),  

(1.175394,0), (−0.9615109,0.2976), (0.8079985,0) 

7 

 

Table 3: Values of equilibrium points at  = 0.019, α1 = 0.9. 

k ( , )   Number 

of points 

0.4 (−0.019,0), (0.75989109,0.76389109), (−0.77389109,−0.77389109), 

(−0.4189109,0.40189109), (0.399109,−0.4019109) 

5 

0.7 (−0.019,0), (0.7299109,0.736109), (−0.73589109,−0.7469109), (0.98554574,0), 

(1.0594,−0.063), (−0.48389,0.4589109), (0.4589109,−0.459109) 

7 

1 (−0.019,0), (0.71599109,0.726109), (−0.72689109,−0.7379109), (0.98554574,0), 

(1.07,−0.071), (−0.524783,0.4989109), (0.500991,−0.5009109) 

7 

10 (−0.019,0), (0.65689109,0.74689), (−0.659109,−0.75918), (0.98554574,0), 

(1.156394,−0.0419), (−0.735109,0.6129), (0.8079985,−0.0091) 

7 

100 (−0.019,0), (0.539109,0.828689), (0.4689109,−0.87138), (0.98554574,0), (1.175394,0), 

(−0.9615109,0.2976), (0.8079985,0) 

7 

 

Table 4: Values of equilibrium points at  = 0.019, α1 = 0.2. 

k ( , )   Number 

of points 

0.4 (−0.019,0), (0.8049109,0), (−0.979109,0), (0.979109,0), (1.165109,0) 5 

0.7 (−0.019,0), (0.807709,0), (−0.987809,0), (0.98594,0), (1.1689109,0) 5 

1 (−0.019,0), (0.79809,0), (−0.989109,0), (0.98554574,0), (1.1809,0) 5 

10 (−0.019,0), (0.809109,0), (−1.00859,0), (0.98554574,0), (1.176394,0), (0.09109,1.0268), 

(0.09109,−1.0268) 

7 

100 (−0.019,0), (0.39109,0.91586), (0.39109,−0.91586), (0.98554574,0), (1.175394,0), 

(−1.00615109,0), (0.8079985,0) 

7 

 

Table 5: Values of equilibrium points at  = 0.019, α1 = 0.4. 

k ( , )   Number 

of points 

0.4 (−0.019,0), (0.781109,0), (−0.905109,0), (0.986109,0), (1.135109,0) 5 

0.7 (−0.019,0), (0.788709,0), (−0.937809,0), (0.98594,0), (1.1489109,0) 5 

1 (−0.019,0), (0.79809,0), (−0.959109,0), (0.98554574,0), (1.1609,0), (0,1.8377), (0,−1.8377) 7 

10 (−0.019,0), (0.809109,0), (−1.001359,0), (0.98554574,0), (1.176394,0), (0.09109,1.0268), 

(0.09109,−1.0268) 

7 

100 (−0.019,0), (0.39109,0.91586), (0.39109,−0.91586), (0.98554574,0), (1.175394,0), 

(−1.00615109,0), (0.8079985,0) 

7 
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Table 6: Values of equilibrium points at  = 0.019, α1 = 0.9. 

k ( , )   Number 

of points 

0.4 (−0.019,0), (0.6549109,0), (−0.699109,0), (0.989109,0), (1.0715109,0), (0,1.24), (0, −1.24) 7 

0.7 (−0.019,0), (0.717709,0), (−0.77809, 0), (0.98594,0), (1.089109, 0), (0,1.11), (0,−1.11) 7 

1 (−0.019,0), (0.74809,0), (−0.829109,0), (0.98554574,0), (1.109,0), (0.01,1.07), (0.01,−1.07) 7 

10 (−0.019,0), (0.804109,0), (−0.9815,0), (0.98554574,0), (1.166394,0), (0.104,0.9971), 

(0.104,−0.9971) 

7 

100 (−0.019,0), (0.39109,0.91586), (0.39109,−0.91586), (0.98554574,0), (1.175394,0), 

(−1.00615109,0), (0.8079985,0) 

7 

 

According to the above tables, we found at-most 

9 libration points and at-least 5 libration points.   

3.2 Locations of Equilibrium Points 

i- 
1( , ) plane 0.2, 0.019       

 

 
Figure 1: Locations of equilibrium points at k = 0.4 

 

Figure 2: Locations of equilibrium points at k = 0.7 

 

 

 

 

 

  

 

Figure 3: Locations of equilibrium points at k = 1 

  

 

Figure 4: Locations of equilibrium points at k = 10 
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Figure 1: Locations of equilibrium points at k 0.4
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Figure 2: Locations of equilibrium points at k 0.7
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Figure 3: Locations of equilibrium points at k 1
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Figure 4: Locations of equilibrium points at k 10
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Figure 5: Locations of equilibrium points at k = 100 

 

ii- 
1( , ) plane 0.2, 0.019     

 

 Figure 6: Locations of equilibrium points at k = 0.4 

Figure 7: Locations of equilibrium points at k = 0.7   

 
Figure 8: Locations of equilibrium points at k = 1 

 

  

 

Figure 9: Locations of equilibrium points at k = 10 

 
Figure 10: Locations of equilibrium points at k = 100 
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Figure 5: Locations of equilibrium points at k 100
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Figure 7: Locations of equilibrium points at k 0.7

L1 L2 L3L4L5

2 1 0 1 2

2

1

0

1

2

Figure 8: Locations of equilibrium points at k 1
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Figure 9: Locations of equilibrium points at k 10
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Figure 10: Locations of equilibrium points at k 100

https://journals.aijr.in/index.php


21 
 

ISSN: 2456-7132 
Available online at Journals.aijr.in 

Abdullah et al., Int. Ann. Sci.; Vol. 1 Issue 1, pp: 15-24, 2016 

3.3 Zero-Velocity Curves 

We have drawn the zero velocity curves for the 

different five values of k and found that as we 

increase the values of k the regions of motion are 

expanding in both   plane (Figure 11-15) 

and    plane (Figure 16-20). 

 

1i. ( , ) plane 0.2, 0.019     
 

 

 

 

Figure 11: Zero-velocity curves for C = 1.0096, k = 0.4 

 

 

 

Figure 12: Zero-velocity curves for C = 1.91903, k = 0.7 

 

 

 

Figure 13: Zero-velocity curves for C = 2.81908, k = 1 

  

 
Figure 14: Zero-velocity curves for C = 29.6734, k = 10 

 

 
Figure 15: Zero-velocity curves for C = 298.019, k = 100 
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Figure 11: Zero velocity curves for C 1.0096, k 0.4
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Figure 12: Zero velocity curves for C 1.91903, k 0.7
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Figure 13: Zero velocity curves for C 2.81908, k 1
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Figure 14: Zero velocity curves for C 29.6734, k 10
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Figure 15: Zero velocity curves for C 298.019, k 100
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1ii. ( , ) plane 0.2, 0.019        

 

Figure 16: Zero-velocity curves for C = 1.32392, k = 0.4 

 
Figure 17: Zero-velocity curves for C = 2.29756, k = 0.7 

 

Figure 18: Zero-velocity curves for C = 3.27138, k = 1 

 

 

 

Figure 19: Zero-velocity curves for C = 32.476, k = 10 

 

 
Figure 20: Zero-velocity curves for C = 324.521, k = 100 

 

3.4 Poincare Surface of Section 

We also have drawn the poincare surface of 

sections for the different five values of  k  and 

found that as we are increasing the values of k, 

the surfaces are expanding. Poincare surface of 

sections for the different values of  k is 

represented in Figure 21. We can also draw the 

poincare surface of sections for the other values 

of 1.  
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Figure 16: Zero velocity curves for C 1.32392, k 0.4
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Figure 21: Poincare Surface of Sections k -> {0.4(Red), 0.7 (Black), 1(Blue), 10 (Magenta), 100(Orange)} 

 

4 Stability of the Equilibrium Points of 

the Autonomized Equations 

Following the procedure of the stability of the 

equilibrium points given by Mccuskey [17], we 

can write the autonomized equation when 

0 0 0, , ,               as 

1 0 0 0'' 2 ' ' ( ) ( ) ( ) ,                

1 0 0 0'' 2 ' ' ( ) ( ) ( ) ,                 

1 0 0 0'' ' ( ) ( ) ( ) ,                (7) 

 

Where ,  and  are the small displacements 

of the infinitesimal body from the libration point. 

Suffix zero denotes the value at the libration 

point.  

 

To solve equation (7), let 

, , ,Ae Be Ce        where A, B 

and C are parameters. Substituting these values in 

equation (7) and rearranging, we get 
2

1 0 0 0( ( ) ) B(2 ( ) ) C( ) 0,A                

2

0 1 0 0A(2 ( ) ) ( ( ) ) C( ) 0,B             

2

0 0 1 0( ) B( ) ( ( ) ) 0,A C               (8) 

The equation (8) will have a non-trivial solution 

for A, B and C if 

2
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We have solved this polynomial for the different 

values of the libration points given in the tables 

and found that in all the cases, λ has mixed values, 

i.e. some values are real and some values are 

complex. Hence all the libration points are 

unstable. 
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5 Conclusion 

We have investigated the existence and stability 

of libration points in the circular restricted three 

body problem. We have evaluated the equations 

of motions when the mass of the primaries as 

well as the infinitesimal bodies varies with time, 

which are different from the classical case by the 

factor 1 and k. We found at most 9 libration 

points and at least 5 libration points given in the 

tables. We have determined the zero velocity 

curves for the different values of k and found 

that the regions of motion are expanding after 

increasing the values of k. We also have drawn 

the Poincare surface of sections for the different 

values of k and observed that the surfaces of 

sections are expanding when we are increasing 

the values of k. Finally, we have checked the 

stability for each libration points given in the 

tables and found that the libration points are 

unstable.  
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