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AB S T R A CT  

The paper authenticated the need for separate positive integer time series model(s). This was done 

from the standpoint of a proposal for both mixtures of continuous and discrete time series models. 

Positive integer time series data are time series data subjected to a number of events per constant 

interval of time that relatedly fits into the analogy of conditional mean and variance which depends on 

immediate past observations. This includes dependency among observations that can be best described 

by Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model with Poisson 

distributed error term due to its positive integer defined range of values. As a result, an integer GARCH 

model with Poisson distributed error term was formed in this paper and called Integer Generalized 

Autoregressive Conditional Heteroscedasticity (INGARCH). Iterative Reweighted Least Square (IRLS) 

parameter estimation technique type of the Generalized Linear Models (GLM) was adopted to estimate 

parameters of the two spilt models; Linear and Log-linear INGARCH models deduced from the 

identity link function and logarithmic link function, respectively. This resulted from the log-likelihood 

function generated from the GLM via the random component that follows a Poisson distribution. A 

study of monthly successful bids of auction from 2003 to 2015 was carried out. The Probabilistic 

Integral Transformation (PIT) and scoring rule pinpointed the uniformity of the linear INGARCH 

than that of the log-linear INGARCH in describing first order autocorrelation, serial dependence and 

positive conditional effects among covariates based on the immediate past. The linear INGARCH 

model outperformed the log-linear INGARCH model with (AIC = 10514.47, BIC = 10545.01, QIC = 

34128.56) and (AIC = 37588.83, BIC = 37614.28, QIC = 37587.3), respectively. 

 

Keywords: Count; Generalized Linear Model (GLM); Integer Generalized Autoregressive Conditional Heteroscedasticity 

(INGARCH); Iterative Reweighted Least Square (IRLS); Poisson. 

1 Introduction 

Regression time series models for linear models 

such as Generalized Autoregressive Conditional 

Heteroscedasticity (GARCH), Autoregressive 

Moving Average (ARMA) etc. and non-linear 

models such as Self-Exciting Threshold 

Autoregressive (SETAR); Mixture 

Autoregressive (MAR) etc. has been dealt with in 

many studies. Typically, this is either by way of 

applying these models to timely related data or by 

compounding with additional parameter(s). 

These models were proposed or propounded to 

accommodate, solve and treat mixed time series 

observations (both continuous and count 

observations over a constant interval of time) 

that might arise from all areas of statistics, 

econometrics, epidemiology, insurance, etc., as 

stipulated by [1] and [2]. 

In as much as only positive integer or count time 

series observations and sometimes due to 

encounter in our constant interval readings, 

Exploratory Data Analysis (EDA) and analyses, 

there is need for time series models to be strictly 

separated for both continuous linear and non-

linear models; and count (positive integer) linear 

and non-linear models without subjecting integer 

or positive integer-valued related observations to 
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a strictly continuous model or vice-versa [3]. Few 

research and brainstorming have been channeled 

into count time series analyzes. Tobias et al. [1] 

explained that count time series are series of 

observations that appear naturally in various 

areas such that a number of events per constant 

time period is observed over a timeframe e.g. 

number of cars that entered a particular filling 

station hourly, number of stock market 

transactions daily, number of defective items in a 

production daily, weekly number of admissions 

in a hospital etc.  

It is also to be noted that such observations 

would be considered as natural values, that is,

ty + . In this regard, some authors, [4] – [6], 

propound models for integer time series. Models 

for count data are not only proposed because 

they take into account suitable dependence 

among observations but also owing to the fact 

that they are models whose conditional mean 

depends on previous observations and immediate 

past values, [5]. According to [7] - [10], count time 

series models can be otherwise called state space 

models because of their dependence traits – and 

because of this dependence traits among 

observations, GARCH will be a suitable model in 

describing and incorporating the analogy of 

conditional mean and variance depending on 

immediate past readings possessed by count data, 

[11], [12]. 

Having said this, a befitting distribution with an 

inclusion of non-negativity (positive integer) 

defined range of positive values, time-

dependence covariates, linear and non-linear 

model for positive conditional mean and variance 

process would be ideal to take in place the 

conventional Gaussian distribution of the white 

noise. In lieu of this, the Poisson and Negative 

Binomial distribution are best to fill this vacuum 

[13], but the Poisson distribution would be used 

due to its simplicity, possessed assumptions of 

count data depending on time and being among 

the family of an exponential family [14]: 

                             

( )

( ) 0,1,
!

ty

t
t

e
P y

y




−

= =                     (1) 

Incorporating equation (1) into the known 

GARCH model as its error term makes it the 

Integer Generalized Autoregressive Conditional 

Heteroscedasticity (INGARCH) of the same 

" "p and" "q , that is INGARCH (p, q); in other 

words, GARCH for Count (Integer) Data. The 

ductile approach ideal to be employed for 

modeling and estimating parameters of the count 

time series data conditioned on the past 

immediate information will be by Generalized 

Linear Model (GLM) methodology, [15].           

2 Generalized Methodology of the 

INGARCH Model. 

GLM encompasses General Linear Model 

(meant for only Gaussian distribution and 

continuous data); all form of data type (be it 

discrete count, categorical, binary, etc.) and all 

forms of distributions of [16]. GLM was 

implemented to work out appropriate linear 

predictor link function (mean function), and 

inverse link function. This was with a view to 

describing the covariate effects attached to the 

dependence observations. Whilst imitating the 

structure-like of this GLM and known GARCH, 

this paper will mimic the Iterative Reweighted 

Least Square (IRSL) of one of GLM techniques 

to estimate parameters in the INGARCH model 

to explain its variability. 

 

Let tY +  denote a count time series and tX + denote a time-varying n-dimensional covariate vector, 

( ),1 ,2 ,, , ,
T

t t t t nX X X X= with conditional mean ( )1/t t tE Y F t +

− =   where tF the history of 

joint process is  1, , :t t tY X t +

+  up to time " "t  including the covariate information at time" 1"t + .   

The INGARCH model from the idea of GARCH is: 

                   0

1 1

( ) ( ) ( )
p q

T

t g t ig d t jd t

g d

h h Y h X     − −

= =

= + + +              (2) 
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  ( , )INGARCH p q = ( ) ( )tg h = The link function, ( )th  =  linear Predictor,

1( )th  − =  Inverse link function with parameter vector ( )1 2, , ,
T

n   = , with arbitrary past 

observations of the independents  1 2, , , pP i i i=  regress on 1 2, , ,t i t i t i pY Y Y− − − defined on 

 1 2, , , qQ j j j= for integers 1 2 1 20 ; 0p pi i i j j j          ,p q +   for any 

choosing " " " "p and q suitable for    1, , , 1, ,P p Q q= = . 

 Considering a situation or scenario where the link function in model in equation (2) is identity, that is 

( ) ( ) ( ) ( )i i t th h g Poisson     = = = =  such that
( )

1 ; 0t

t

h 





= =


, gives 

                        0

1 1

p q

t g t g d t d

g d

Y    − −

= =

= + +                                       (3)                

For tY of past observation that is Poisson distributed. equation (3) is the INGARCH (p, q) for LINEAR 

MODEL. 

If model in eqn. (1) has a logarithmic link function, that is ( ) log( ),t th  = then ( ) log( 1)t th Y Y= + , by 

setting log( )t tv = , 
( )

1 ; 0t

t

h v

v



 


gives 

                0

1 1

log ( 1)
p q

T

t g t g d t d t

g d

v Y X    − −

= =

= + + + +                     (4) 

INGARCH for LOG-LINEAR MODEL of the order (p, q). Equation (4) is the log-likelihood function of 

the GLM. 

3 Parameter Estimation 

The Iterative Reweighted Least Square (IRSL) parameter estimation technique will be adopted in this work. 

Let  0 1 1 1, , , , , , , , 0:p q n       + =   . For stationarity condition and erogidic 

condition of INGARCH, condition 
1 1

1
p q

k d

g d

 
= =

+    for 0 0  as related to GARCH for linear model 

in equation (3). 

Also,  

 0 1 10, , , , , , 1p q     =   for stationarity condition and erogidic condition of 

INGARCH (p, q) , condition 
1 1

1
p q

k d

g d

 
= =

+    for the log-linear model. 

3.1 Parameter Estimation of the Log-linear INGARCH Model 

The partial derivations of ( )t   is then 
'( ) ( )
( ( ))t t
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v
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
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Adopting the Newton–Raphson multivariate iterative technique:  
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( ) ( )m m

nI and S  are the Fisher information and Score matrixes respectively to be evaluated by 

( ) ( 1)m m  += via iterative procedure. 

3.2 Parameter Estimation of the Linear INGARCH Model 
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Adopting the Newton–Raphson multivariate iterative technique:  

1
2

( 1) ( ) ( ) ( )k k

T

 
 

−

+      
= −   

     

So, the Fisher Scoring algorithm,  

1
2

( 1) ( ) ( ) ( )k k

T

 
 

−

+
      

= + −    
    

 

                          
1

( 1) ( ) ( ) ( )k k k k

nI S 
−

+  = +     

Where 
( ) ( )k k

nI and S  are the Fisher information and Score matrixes respectively to be evaluated by 

( ) ( 1)k k  += via iterative procedure. 

4 Analytical Results and Discussion 

The number of successful bid of government 

auctions in Nigeria from 2002 to 2015 was used 

as illustration. The number of auction bids were 

recorded in a monthly uniform interval by the 

Central Bank of Nigeria with 156 counted data 

points over the thirteen (13) years period. 

 
Figure 1: Time plot of the monthly number of 

successful bids of auctions 

From the time plot in Figure 1 above, it was 

obvious that the number of auction successful 

bids swing between 10 and 25 monthly expect for 

a fall in the bid around early 2007. It was 

unarguably that the number of bids is positive 

counts monthly. 

Apart from the identical autocorrelation function 

of both the INGARCH log-linear and linear 

models’ residuals, their series were nothing but a 

realization of discrete white noise as shown in 

Figure 2. Their autocorrelation residuals 

indicated a time-dependence effect that do leads 

to conditional mean and variance process with a 

short-range serial dependence by a first order 

autoregressive each. Their squared residuals 

unveiled the evidence of serial and conditional 

heteroscedasticity trait present in their time-

varying counts. 

 
Figure 2: The autocorrelation residuals of the log-

linear and linear INGARCH models respectively. 

Ascertaining the correctness instrument via the 

PIT histograms, the histogram bars in the linear 

INGARCH model appears more clustered as 

oppose to the disentangled bars (the U-shaped) 

of the log-linear INGARCH model. The linear 

INGARCH model seems to approach uniformity 

better. The probabilistic integral transformation 

of the linear model seems to be more appropriate.  

Table 1: Scoring rules for the linear and log-

linearized INGARCH model. 

Scores Logarithmic    Sq. Error Norm. Sq. 

Error 

Ranked 

prob. 

Dawid-

Sebastiani 

Log-

linear 

15.657845   11129.48 25.4587788 37.42548 29.214641 

Linear 4.376028 10563.26 0.9958283 34.65504   7.411528   

Keys: Sq. error = Squared Error;  

Norm. Sq. Error = Normalized Squared Error; 

prob. = probability 

 

Considering the estimated scoring indexes for the 

two INGARCH models as shown in Table 1. It 

can be deduced that the linear INGARCH model 

Time

N
o
. 
o
f 
s
u
c
c
e
s
fu

l 
B

id

2002 2004 2006 2008 2010 2012 2014

0
5

1
0

1
5

2
0

0 5 15 25

-0
.4

-0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

ACF of the Log-linear

0 5 15 25

-0
.4

-0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

ACF of the linear 

https://journals.aijr.in/index.php


41 
 

ISSN: 2456-7132 
Available online at Journals.aijr.in 

Rasaki Olawale Olanrewaju., Int. Ann. Sci.; Vol. 4, Issue 1, pp: 35-43, 2018 

will capture the time-varying effects in the count 

observations compare to the log-linear 

INGARCH model in terms of model 

performance via logarithmic and ranked 

probability distribution indexes; via Dawid-

Sebastiani index of correcting and penalization of 

dispersion variation (overestimation and 

underestimation) through the variance; and via a 

lower predictive error (integer-valued forecast) of 

squared error and normalized squared error. The 

outcome of the scoring rule collaborates with the 

already established indication by PIT histograms 

in figure 3. This might be due to non-negative 

covariates effects and small magnitude of the 

count series. 

 
Figure 3: The Probability Integral Transformation 

(PIT) of the models 

Table 2: Coefficients of the linear INGARCH (1, 1) 

model. 

Parameters Estimate Std. 

Error 

t-value P-

value 

    95 %  

C.I 

(Intercept) 5.4666 3.2806 16.492 0.0000 (-0.9631  

11.896) 

beta_1 0.7919 0.0931 52.201 0.0020 (0.6094    

0.974) 

alpha_1 0.1711 0.0918 102.402 0.0009 (-0.0087   

0.351) 

interv_1 0.0009 2.8761 15.290 0.0000 (-5.6361  

5.638) 

interv_2 0.6170 6.1979 27.390 0.0000 (-

10.5406  

13.755) 

dispersion 0.0457 - 35.289 - - 

Log-likelihood = -5251.234; AIC = 10514.47; BIC = 

10545.01; QIC = 34128.56  

 

( )Y poisson
t t

      

5.467 0.792 0.171 0.000935 0.607 1, , 156
1 1 12

Y X X for t
t t t tt

 + + + + ==
− − −

 

Table 3: Coefficients of the Log-linear INGARCH 

(1,1) model 

Parameters Estimate Std.Error t-value P-value    95 %  

CI 

(Intercept) 9.4230 0.4726 34.823 0.0033 (8.5037   

10.356) 

beta_1 0.8453 0.0056 52.092 0.0000 (0.8344    

0.856) 

alpha_1 0.1063 0.0057 64.715 0.0000 (0.0951    

0.118) 

interv_1 0.0048 0.4570 5.8912 0.0041 (-0.8910   

0.901) 

interv_2 0.6003 3.3594 23.797 0.0713 (-5.9740   

7.195) 

Log-likelihood= -18789.41; AIC = 37588.83; BIC = 37614.28; 

QIC = 37587.3 

(log( ))Y poisson
t t

      

9.4230 0.845 0.106 0.005 0.610    1, , 156
1 1 12

log( ) Y X X for t
t t tt t
 + + + =

− −
= +

−
  

From table 2 and 3, beta_1 + alpha_1 =0.963 < 

1 and beta_1 + alpha_1 =0.9516 < 1 for the 

INGARCH (1, 1) linear and log-linear INARCH 

(1, 1) model respectively confirm the presence of 

positive conditional variability, that is, the 

stability of the models, with stability realized in 

the linear INGARCH (1,1) model due to its 

smaller standard error of  the intercept (3.2806) 

compare to that of in log-linear INGARCH(1,1) 

model with (0.4726). The alpha_1s of 0.1711 

(17.11) and 0.1063 (10.63) in the respectively 

models explained the level of covariates effects 

(positive variation) conditioned on the present 

count based on the immediate past, with a high 

positive and reliable effect recorded in 

INGARCH (1, 1) linear model. The coefficients 

of 
12

&
t t

X X
−

 explained the effect of the first to 

last month of every year order autocorrelation in 

the models. The interv_1 and interv_2 

coefficients measure the increment/awareness at 

the beginning and end of every year, it seems to 

be more effective in the linear model. Based on 

the two models fitted, the linear model possessed 

a robust model performance that best explained 

covariates effect with smaller (AIC = 10514.47; 

BIC = 10545.01; QIC = 34128.56) compare to 

model performance by log-linear model with 

(AIC = 37588.83; BIC = 37614.28; QIC = 

37587.3). The Integer-valued and reliable 

forecasts would be realistic via the linear model 

compare to the log-linear model. Lastly, an over-

dispersion of 4.57% was unfolded, that is the 

log-linear
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variance of the process was 0.0457 greater than 

its mean. 

5 Conclusions 

In conclusion, count time series model should be 

associated with discrete distribution(s) such as 

the Poisson distribution, as the white noise that 

follows the distributional properties of a timely 

and positive integer observed series for sufficient 

and efficient parameters that will truly capture 

and explain the dependence traits and variability 

among observations. Having said this, no need of 

subjecting strictly counts (positive integer) data to 

the conventional GARCH model with Gaussian 

independently distributed (distribution for 

continuous data) error terms when variability and 

dependence among observations are of interest 

when considering positive integer observations; 

instead, INGARCH with Poisson distributed 

(distribution for positive integer-valued data) 

error term will be ideal. The study revealed that 

the INGARCH linear model captured serial and 

conditional heteroscedasticity in the time varying 

and time dependent counts (positive integer-

valued observations) trait present in the of the 

monthly successful bids of auction than that of 

the log-linearized INGARCH model. Also 

unfolded was the first order autocorrelation(lag), 

that best describe the conspicuous dependence 

on the number of successful auction bids for in 

previous month and year with the conditional 

heteroscedasticity and covariates effects 

conditioned on the preceding month on the 

present month. 
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