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A B S T R A CT  

Application of machine learning in multiclass classification of brain tumor types has contributed to the 

development of computer aided diagnosis (CAD) system that can potentially enhance accuracy and 

speed up diagnosis of the disease. LDA+ELM model with different activation functions were 

investigated to achieve the optimum performances in terms of accuracy, Kappa statistic, sensitivity, 

precision, F-measure, training time and test time.  We also proposed a user-friendly GUI in 

characterizing brain tumor types using MR images. First, a total of 3064 slices of CE T1-weighted brain 

MR images with ground truth were downloaded from a free online database. The manually segmented 

tumor region was augmented and then undergo several feature extraction techniques. All the feature 

descriptors obtained were then concatenated, followed by LDA dimensionality approach. Performance 

of different number of LDA features and ELM activation functions were investigated by repeated 

training and test. The ELM output of training data for each class was used to fit GMM and these 

probabilistic models used to estimate posterior probabilities of test data. LDA+ELM model with 5 

LDA feature input, utilizing sigmoid function as hidden nodes activation functions achieves the best 

generalization performance with accuracy of 98.92% and corresponding F-scores for meningioma, 

glioma and pituitary tumor of 97.81%, 99.1% and 99.5% respectively. The proposed method 

(LDA+ELM) model performs better compared to other previous works using the same dataset and 

performing the same classification task. 

 

Keywords: Multi-class classification of brain tumor, Linear Discriminant Analysis (LDA), Extreme Learning Machine (ELM), 

activation functions, Gaussian Mixture Model (GMM).  

 

1 Introduction 

Simply speaking, brain tumor is the collection of 

abnormal cells in central nervous system. Early 

detection of brain tumor is crucial for treatment 

planning and prognosis, thus enhancing the 

chance of survival of patients. Nonetheless, 

tumor characterization and evaluation is difficult 

due to the fact that neoplastic tissues often appear 

heterogeneous pixel-wise in biomedical images 

[1]. While biopsy (extraction of tissues) remains 

as gold standard in cancer diagnosis, it is also 

invasive and could not characterize brain tumor 

spatial and temporal heterogeneity. Analysis of 

medical images data can be excellent alternative 

as they are non-invasive, time efficient and 

contain rich histopathologic information. 

Nowadays, considerable amounts of medical 

image dataset are generated and collected during 

routine clinical practices [2], which open up the 

possibility of scientific knowledge discovery, 

while at the same time rendering manual analysis 

of medical data implausible. Current 

advancement of statistical modeling and 

computer vision enables semi-automated or even 

automated image processing in clinical practice, 

like image registration, tissue classification, 

volumetric analysis, and image segmentation. 

This gives rise to an emerging field of study, 

called radiomics, from which can be dated back 

to the work of [3]. Radiomics is high-throughput 

conversion of image data into mineable high-

dimensional features for the purpose of 
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improved clinical diagnosis. Categorization of 

brain tumor types using medical images can be 

achieved through sequence of radiomics 

workflow: data acquisition, regions of interest 

(ROI) segmentation, feature extraction, feature 

reduction, followed by model construction and 

validation. This study can contribute to the 

development of computer aided diagnosis (CAD) 

system. One of the most important purposes of 

CAD is to provide objective and accurate 

diagnosis outcome that can complement 

radiologists in decision making. Additionally, it 

can shorten image analysis duration and solves 

the issue of variability of opinions among clinical 

experts. Ultimately, if proven accurate and 

consistent in real-time application, biopsy 

(extraction of tumor samples) can be bypassed or 

at least avoided if necessary in diagnosis 

procedure. 

In view of the severity of brain tumor and lack of 

effective treatment, early diagnosis of the disease 

can be crucial for the patient recovery and 

treatment planning for the doctor. Advanced 

imaging protocols, like computed tomography 

(CT), positron emission tomography (PET), and 

MRI have provided unprecedented high 

resolution of medical images that make medical 

image analysis possible. In this paper, MRI will be 

the modality of choice because : 1) MRI is non-

invasive, 2) produces multiple slices of images of 

the same tissue region with different contrast by 

applying different image acquisition protocols 

and parameters [4], 3) high contrast of soft tissues 

and high spatial resolution. In this paper, only 

contrast enhanced T1-weighted MR image will be 

considered as multi-spectral MR images analysis 

is expensive and increases odds of segmentation 

errors due to inconsistency and misalignment [5]. 

This paper aims to extract radiomic features from 

MRI scans to determine the correct type of tumor 

for MR image slices. 

In recent years, there has been surge in research 

interest regarding supervised classification of 

brain tumor types using MRI scans. Early work 

performed by [1] investigated the use of machine 

learning schemes (LDA, kNN and nonlinear 

SVM) in binary classification of metastases and 

glioma as well as grades of glioma. In addition, 

the authors also performed multiclass 

classification by applying one versus all SVM 

model. The overall accuracy in distinguishing 

glioma grade II, III, IV and metastases is 63.3%. 

The same classification problem was explored by 

[6]. The highest leave-one-out cross-validation 

accuracy of 76.29% was achieved by Best First 

Search algorithm and VFI as classifier. [7] put 

forward a comprehensive radiomics workflow, in 

which classes involved are astrocytoma, 

glioblastoma multiforme, childhood tumor-

medulloblastoma, meningioma (MEN), 

secondary tumor-metastatic and normal regions. 

A total sample of 856 regions of interest and 218 

features were extracted. The overall accuracy 

achieved is 85.23% using PCA-ANN approach. 

Classification problem of 6 classes, glioma grade 

I, II, III and IV, meningioma and metastases was 

performed by [8] using one against one SVM 

model.  

Recent work of [9] utilized first order and second 

order statistical features from brain MR images to 

develop SVM model. Their experiment shows 

that highest accuracy of 85% was attained by 

SVM model trained by second-order statistical 

features. [10] proposed a new machine learning 

pipeline consisting of hybrid structure descriptor 

and fuzzy-based RBF SVM that categorized MR 

images into meningioma, metastases, glioma II 

and III. The overall accuracy of 96.74% was 

reported. Back-propagation artificial neural 

networks (BPANN) trained with statistical 

features from DWT transform and Gabor filter 

developed by [11] in classifying meningioma, 

glioma and pituitary tumor achieved overall 

accuracy of 91.9%. 

Deep learning has now become the state-of-the-

art in many domains, especially in automatic 

image analysis, when a major breakthrough in 

image classification of ImageNet challenge in 

2012 [12]. The reasons behind the success of 

deep neural networks include: 1) availability of 

sophisticated hardware with high computing 

power, 2) development of learning algorithm 

[13], 3) reinforcement learning, which can capture 

crucial semantic information pertaining class 

discrimination[14]. Even though deep learning 

model is well known for its remarkable 

recognition accuracy, it requires tuning of hyper-

parameters, sophisticated hardware and large 
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amount of annotated data. Its performance in 

small data samples problem is still inconclusive.  

To the best of our knowledge, most of the 

previous works regarding supervised 

classification of brain tumor types focus on 

development of novel machine learning pipelines 

and attaining high overall accuracy. In other 

word, only the discrete outputs of classifier (with 

test data as input) are being taken into account 

during evaluation phase of the proposed model. 

In addition, output scores (confidence) of 

classifier might not represent underlying real 

probability of certain class given the attributes of 

sample. In fact, modern neural networks are 

poorly calibrated, despite being accurate [15]. 

Accurate class probability estimates is crucial in 

real-world high stake decision making system, 

especially medical diagnosis [16], whereby there is 

difference in cost of misclassification and domain 

knowledge is required [17] because it provides 

likelihood or uncertainty of predictions. Since 

human have natural cognitive intuition for 

probability [18], probabilistic outputs enhance 

reliability of the system. This study bridges the 

gap by applying Gaussian mixture model to 

transform the extreme machine learning (ELM) 

model outputs in reference to work of [19]. 

The goal of this paper is to address multi-class 

recognition of brain tumor types using 2D MRI 

scans by sequence of steps outlined in radiomics. 

Combination of linear discriminant analysis 

(LDA) feature reduction approach and ELM 

classifier, which we abbreviated as LDA+ELM is 

proposed. Apart from that, different activation 

functions, such as sigmoid, hard-limit, sine and 

radial basis function (RBF) are investigated. Last 

but not least, a user-friendly graphic interface 

(GUI) is put forward, with probability of 

respective brain tumor types (e.g. meningioma, 

glioma and pituitary tumor) as output. 

2 Research Methodology 

The research framework proposed can be 

summarized in Fig. 1 and Fig. 2.  

 
Figure 1: Summary of research framework 

 
Figure 2: Schematic diagram of research flow. 
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This workflow was performed under one to 80 

LDA attributes. Additionally, for each training 

and test data partitioning, random stratified 

sampling was conducted to ensure similar class 

distribution for both training and test dataset. 

70% of original data is allocated for training, 

while another 30% is partitioned for performance 

evaluation (test). The optimal machine learning 

pipeline was then determined by analyzing several 

performance indicators and the output of the 

trained ELM classifier was used to fit GMM 

model for each class. The resulting GMM models 

can be used estimate the class membership 

probability of test data. Lastly, a user-friendly 

GUI capable of performing brain tumor types 

classification was developed. 

2.1 2D MRI scans acquisition 

The brain MR images were downloaded from 

publicly available online database. A total of 3064 

slices of T1-weighted contrast enhanced MR 

images from 233 patients was downloaded from 

https://figshare.com/articles/brain_tumor_data

set/1512427. There are three kinds of brain 

tumor in the MR images downloaded, namely 

meningioma (708 slices), glioma (1426 slices), and 

pituitary tumor (930 slices). The brain T1-

weighed CE-MRI dataset was acquired from 

Nanfang Hospital, Guangzhou, China, and 

General Hospital, Tianjing Medical University, 

China, from year 2005 to 2010. The images have 

an in-plane resolution of 512×512 with pixel size 

0.49×0.49 𝑚𝑚2. The slice thickness is 6 mm and 

the slice gap is 1 mm [20, 21]. 

2.2 Tumor region augmentation 

The 2D brain MR images comes with ground 

truth tumor region delineated manually by 

experienced radiologists. As pointed out in [22], 

tissues surrounding tumors can provide useful 

discriminative information about the types of 

tumor. Thus, augmentation of tumor region can 

be beneficial in extracting robust features. In this 

study, augmentation of tumor region was 

performed by morphological dilation with disk-

shape structuring element with radius, R of 8. 

2.3 Feature extraction 

Simply speaking, feature extraction is a 

dimensionality reduction method, in which 

instead of utilizing pixel intensity in raw images, a 

set of attributes, also known as feature vector is 

constructed to represent a certain image. This 

stage is crucial as it can directly impacts the 

generalization performance of classification 

models [23]. Ideal set of feature should be 

relevant, non-redundant, provide intrinsic 

dimensional representation for visualization, and 

increase training and inference speed of learning 

algorithms [24], 2003). In this paper, several 

feature extraction techniques were employed, 

including shape parameters, geometric moment 

invariants [25, 26], Zernike moments [27, 28], 

pseudo Zernike moments [29], histogram of 

oriented gradients (HOG) [30], linear binary 

pattern (LBP) [31], and bag of words (BOW) 

model [32]. It is worth noting that the image 

features will be extracted from the augmented 

tumor region. The number of features extracted 

from each method are summarized in Table 1. 

Therefore, the whole feature matrix dimension is 

3064 × 1553. 

Table 1: Feature extraction and its number of 

features. 

Feature extraction 

methods 

Number of features 

Binary shape parameters 11 

Geometric moment 

invariants 

7 

Zernike moments 12 

Pseudo Zernike 

moments 

15 

HOG 900 

LBP 108 

Bag of words model  500 

2.4 LDA feature reduction 

LDA is a linear dimensionality reduction method 

that can resolve the issue arise from high 

dimension data, such as high computational cost 

and complexity as well as undesirable modeling 

performance [33]. LDA is a supervised approach 

where class label of dataset is required. This is 

because, in the formulation of LDA, it tries to 
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compute the “directions” that will maximize the 

separation of training samples between classes 

and at the same time minimizes the separation of 

test samples within class. 

Let define some important notation, 𝒙𝑖  be the 

row vector representing features of a sample, 𝒙𝑘̅̅ ̅ 

is the mean vector for k class, 𝝁 is the overall 

mean vector of whole data, 𝐶𝑘  denotes the 

indices of samples belong to k class and 𝑁𝑘 is the 

number of class available. The steps involved for 

feature transformation using LDA are as follow: 

1) Calculate the mean for each class, 𝒙𝒌̅̅ ̅  and 

overall mean, 𝝁. 

2) Calculate the within class scatter matrix, 𝑺𝑤 

and between class scatter matrix, 𝑺𝑏  using 

formula below: 

𝑺𝑤 = ∑ ∑ (𝒙𝑖 − 𝒙𝑘̅̅ ̅)

𝑖∈𝐶𝑘

𝑁𝑘

𝑘=1

(𝒙𝑖

− 𝒙𝑘̅̅ ̅)𝑇 

(1) 

𝑺𝑏 = ∑ 𝑛𝑘(𝒙𝒌̅̅ ̅ − 𝝁)

𝑁𝑘

𝑘=1

(𝒙𝒌̅̅ ̅ − 𝝁)𝑇 (2) 

 

3) Maximize 𝒘 such that between class scatter 

is maximized and within class scatter is 

minimized. Seeking optimum vector 𝒘  is 

equivalent to solving generalized eigenvector 

system below: 

𝑺𝑏𝒘 = 𝜆𝑺𝑤𝒘 (3) 

 

4) After finding 𝒘  and 𝜆 , rearrange the 

eigenvectors according to the descending 

order of 𝜆 . The original data matrix is 

projected into new dimensional space, 𝑍 by 

linear transformation: 

𝑍 = 𝑋𝒘 (4) 

2.5 ELM classifier 

Recently, ELM has attracted a lot of interest 

among researchers due to its fast training 

convergence and similar prediction accuracy 

compared to state-of-the-art classification 

models like neural networks and support vector 

machine (SVM). The working principle of ELM 

is to train single layer feed forward neural 

networks (SLFN). Unlike conventional neural 

networks in which the hidden nodes parameters 

are iteratively tuned based on the training error, 

the hidden node parameters of ELM are 

generated randomly. It has been proven in the 

work of [34, 35] that without tuning hidden node 

parameters of SLFN with arbitrary number of 

hidden nodes, the system can still learn from 

training data. Since the hidden node parameters 

are randomly generated, they are independent of 

each other as well as of training data. The general 

architecture of ELM is depicted as in Fig. 3. 

Consider training set containing n samples, 

(𝒙𝑖, 𝒕𝑖) , where 𝒙𝑖 ∈ ℝ𝑚, 𝒕𝑖 ∈ ℝ𝑁𝑘 , whereby 

𝒕1 = [1, −1, −1]𝑇 , 𝒕2 = [−1,1, −1]𝑇 , 𝒕3 =

[−1, −1,1]𝑇 . The output function can be 

expressed as below: 

𝑓𝐿(𝒙) = ∑ 𝛽𝑖𝐺(𝒂𝑖

𝐿

𝑖=1

, 𝑏𝑖, 𝒙) (5) 

where 𝛽𝑖 is the output weight for the output of 

hidden node activation function 𝐺(𝒂𝑖, 𝑏𝑖, 𝒙), 𝒂𝑖 

and 𝑏𝑖 are both parameters for hidden node 𝑖, 𝐿 

is the number of hidden node used. Several 

hidden node output functions, such as sigmoid, 

hard limit, sine and radial basis function (rbf) 

activation functions in which their formula are 

displayed in Table 2 were experimented. It should 

be noted that 300 hidden nodes are chosen in this 

study. The above equation can also be written in 

matrix form: 

𝑯𝜷 = 𝑻𝐿 (6) 

where, 

𝑯 = (
𝐺(𝒂1, 𝑏1, 𝒙1) ⋯ 𝐺(𝒂𝐿, 𝑏𝐿, 𝒙1)

⋮ ⋱ ⋮
𝐺(𝒂1, 𝑏1, 𝒙𝒏) ⋯ 𝐺(𝒂𝐿 , 𝑏𝐿, 𝒙𝑛)

)

𝑛×𝐿

 

𝜷 = (
𝛽1

⋮
𝛽𝐿

)𝐿×𝑁𝑘
 

𝑻𝐿 = (
𝑇1

⋮
𝑇𝑛

)𝑛×𝑁𝑘
 

The objective of ELM is to minimize ‖𝑯𝜷 − 𝑻‖ 

and ‖𝜷‖ . Minimization of ‖𝑯𝜷 − 𝑻‖  is 

equivalent to minimization of training error while 

minimization of ‖𝜷‖  is equivalent to 

minimization of norm of weight of connection 

between hidden nodes and output layers, 𝜷 . 

According to Bartlett’s theory [36], for 

feedforward neural networks reaching smaller 

training error, the smaller the norm of weights is, 

https://journals.aijr.in/index.php
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the better generalization performance the 

networks tends to have. In the paper of [37], 

minimizing ‖𝜷‖ can be regarded as maximizing 

the distance of the separating margins of the two 

different classes in the ELM feature space. As 

such in order to optimize 𝜷, minimal norm least 

square formula can be employed: 

𝜷 = 𝑯† 𝑻 (7) 

where 𝑯†  denotes generalized Moore-Penrose 

inverse matrix. The above equation can also be 

expressed as: 

𝜷 = (𝑯𝑻𝑯)−𝟏 𝑯𝑻𝑻 (8) 

Nonetheless, the above formulation can become 

computationally implausible if inverse of 𝑯𝑻𝑯 

do not exists and computationally unstable if the 

condition number of square matrix 𝑯𝑻𝑯 is large. 

To avoid these issues, diagonal elements of 𝑯𝑻𝑯 

can be added with positive value according to 

ridge regression theory [38]. In our case where 

number of training instances are large, 𝜷 can be 

solved via [39]: 

𝜷 = (
𝐼

𝑐
+ 𝑯𝑻𝑯)−𝟏 𝑯𝑻𝑻 (9) 

where c is a positive number. The author 

recommended the use of c in the range of 

{2−24, 2−23, … , 225} . 5-fold cross validation 

methods are employed to find the best c. 

 

Figure 3: General architecture of ELM  [40]  

 

 

Table 2: Formula of activation functions 

Activation 

functions 

Formula 

Sigmoid 𝐺(𝒂, 𝑏, 𝒙𝑖)

=
1

1 + exp (−(𝒂𝒙𝑖 + 𝑏))
 

Hard-

limit 
𝐺(𝒂, 𝑏, 𝒙𝑖) = {

1, 𝒂𝒙𝑖 + 𝑏 ≥ 0 
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Sine 𝐺(𝒂, 𝑏, 𝒙𝑖) = sin ( 𝒂𝒙𝑖 + 𝑏) 

rbf 𝐺(𝒂, 𝑏, 𝒙𝑖) = exp (−𝑏‖𝒙𝑖 − 𝒂‖2) 

2.6 GMM 

Simply speaking, GMM is a type of unsupervised 

soft clustering method that assign the likelihood 

of cluster membership for each data instance, 

with assumption that data are generated by finite 

number of Gaussian distributions. Being a 

parametric probability density function, the 

probability of certain data point is represented as: 

𝑝(𝒙) = ∑ 𝜋𝑘𝒩(𝒙|𝜇𝑘, ∑𝑘)

𝐾

𝑘=1

 (10) 

where 𝜋𝑘  is mixing coefficient, 𝒩  represents 

multivariate probability density function, 𝜇𝑘  is 

mean vector, ∑𝑘 is covariance matrix, and K is 

the number of clusters. Parameters involving  𝜋𝑘, 

𝜇𝑘  and ∑𝑘  are optimized by maximizing log 

likelihood function as expressed below: 

ln (𝑝(𝒙))

= ∑ ln (∑ 𝜋𝑖𝒩(𝒙𝒏|𝜇𝑘, ∑𝑘)

𝐾

𝑘=1

)

𝑛

𝑖=1

 
(11) 

Since there is no elegant closed form solution to 

equation (11), it can be solved using iterative 

algorithm, called expectation-maximization (EM) 

algorithm. To produce reliable probability 

estimates, separate GMM is used to fit the output 

vectors (from training data) of ELM that are 

correct for each class. Each GMM can model 

conditional probability of ELM output given 

respective class, 𝑝(𝑡|𝐶) . By applying Bayes’ 

theorem, we can estimate the class conditional 

probability given a certain ELM output from test 

data: 

𝑝(𝐶𝑖|𝑡) =
𝑝(𝑡|𝐶𝑖)𝑝(𝐶𝑖)

𝑝(𝑡)
 

=
𝑝(𝑡|𝐶𝑖)𝑝(𝐶𝑖)

∑ 𝑝(𝑡|𝐶𝑖)𝑝(𝐶𝑖)
𝑁𝑘
𝑖=1

 

 

(11) 
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The only arbitrary parameter is the number of 

clusters, K. We employ Akaike Information 

Criterion (AIC) to select the best K. We utilize 

the idea in the work of [19] by fitting GMM with 

only the correctly identified samples during 

training phase and calculate the class conditional 

probability based on the above formula during 

test phase. 

2.7 Performance evaluation 

In order to evaluate the performance of 

LDA+ELM classification model under different 

number of features, 7 commonly accepted 

performance measures were utilized, including 

test accuracy (%), Kappa statistic, sensitivity (%), 

precision (%), F-measure (%), training time (s) 

and test time (s). Mean and standard deviation of 

each performance metrics were computed for 

unbiased analysis and comparison among 

methods employed. This process is necessary as 

robust performance evaluation can provide clear 

picture of the strengths and weaknesses of the 

machine learning paradigms being analyzed. 

Table 3 shows some notations in confusion 

matrix. Table 4 describes the performance 

measures and its definitions. 

Table 3: Notations in confusion matrix. 

Table 4: Performance measures and its respective formula. 

Performance measures Definition Formula  

Accuracy Overall efficiency and generalizability of 

classifier [41]. However, its use in performance 

comparison among classifiers is limited [42]. 

𝐴𝑐𝑐 =
𝑇𝑃

𝑛𝑇
, 

 𝑛𝑇 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 

Kappa statistic Measure the degree of agreement between the 

predicted labels and the ground truth [43]. 
𝐾𝑎𝑝𝑝𝑎 =

𝐴𝑐𝑐−𝑃(𝐸)

1−𝑃(𝐸)
,  

P(E)=expected agreement between 

classifier and ground truth by chance 

 

Sensitivity Compute the proportion of samples of class 

‘A’ label that are correctly predicted as class ‘A’ 

in the test phase. 

For class A, 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝐴

=
𝑇𝑃𝐴

𝑇𝑃𝐴 + 𝐸𝐴𝐵 + 𝐸𝐴𝐶

 

Precision Indicate the proportion of test samples that are 

predicted to be class ‘A’ that match the known 

true class label. 

For class A, 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑜𝑓 𝐴

=
𝑇𝑃𝐴

𝑇𝑃𝐴 + 𝐸𝐵𝐴 + 𝐸𝐶𝐴

 

F-measure/F-score Harmonic mean of precision and sensitivity. For class A, 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 𝑜𝑓 𝐴

=
2𝑇𝑃𝐴

2𝑇𝑃𝐴 + 𝐸𝐴𝐵 + 𝐸𝐴𝐶 + 𝐸𝐵𝐴 + 𝐸𝐶𝐴

 

Training time Quantify the convergence speed of training. - 

Test time The rate at which the output labels of test 

samples are generated. 

- 

 

 

 

    Predicted classes 

    A (meningioma) B (glioma) C (pituitary 

tumor) 

True classes A (meningioma) 𝑇𝑃𝐴 𝐸𝐴𝐵  𝐸𝐴𝐶  

B (glioma) 𝐸𝐵𝐴 𝑇𝑃𝐵 𝐸𝐵𝐶  

C (pituitary tumor) 𝐸𝐶𝐴 𝐸𝐶𝐵  𝑇𝑃𝐶  
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3 Results 

In this paper, we investigated different activation 

functions of ELM under different number of 

LDA features. Fig. 4-7 shows the performance 

measures (e.g. accuracy, Cohen’ Kappa, training 

time and test time) of sigmoid, hard-limit, sine 

and rbf hidden node activation functions 

respectively. Empirical observation of these 

figures shows that the performances of sigmoid 

and hard-limit transfer function are relatively 

more stable and insensitive to changes in number 

of features (more resistant to overfitting issue). 

Accuracies and Kappa statistics for both sine and 

rbf decline after number of features increase 

beyond a threshold. 

 

 

 

Figure 4: Performance measures versus number of 

features for sigmoid activation function. 

 

 

 

Figure 5: Performance measures versus number of 

features for hard-limit activation function. 
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Figure 6: Performance measures versus number of 

features for sine activation function. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 7: Performance measures versus number of 

features for rbf activation function. 
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Table 6 shows the performance measures of 

activation function under optimal number of 

features. The best generalization performance is 

achieved by sigmoid function, with accuracy of 

98.92%, using just 5 LDA attributes, 

Interestingly, very high standard deviation in 

performance measures of sine activation function 

indicates that its performance is very sensitive to 

sampling of data. Table 7 shows performance 

metrics of sigmoid function before and after 

applying GMM on ELM outputs. There is no 

significant difference in performance measures 

before and after applying GMM on ELM 

outputs, suggesting that GMM can approximate 

the probability of classes well. 

Fig. 8 shows the GUI developed and the function 

of each buttons clearly explained. 

 

 

Table 6: Performance measures of activation function under optimal number of features. 

Activation functions sigmoid hardlim sine rbf 

number of features 5 23 8 9 

Accuracy (%) 98.923±0.378 98.680±0.361 87.715±11.912 98.306±0.518 

Kappa statistics 0.983±0.006 0.979±0.006 0.791±0.218 97.337±0.819 

Sensitivity (%) 

A 97.536±0.971 96.186±1.447 64.232±27.192 95.088±2.684 

B 99.509±0.360 99.509±0.360 99.953±0.113 99.392±0.595 

C 99.081±0.513 99.308±0.351 86.838±22.503 99.093±0.846 

Precision (%) 

A 98.081±0.905 98.861±0.687 99.280±1.618 98.060±1.488 

B 98.694±0.503 98.045±0.632 81.970±13.132 97.792±1.199 

C 99.928±0.197 99.547±0.373 99.710±0.490 99.366±0.944 

F-measure (%) 

A 97.805±0.740 97.498±0.763 73.947±24.859 96.514±1.085 

B 99.099±0.370 98.770±0.364 89.466±8.667 98.579±0.558 

C 99.502±0.263 99.426±0.246 90.496±20.066 99.223±0.481 

training time (s) 0.029±0.003 0.031±0.003 0.031±0.002 0.067±0.004 

test time (s) 0.005±0.000 0.005±0.000 0.006±0.001 0.006±0.000 

A-meningioma, B-glioma, C-pituitary tumor 

Table 7: Performance metrics (mean ± standard deviation) of sigmoid function before and after applying GMM 

on ELM outputs. 

Performance 

measures 
Using classifier scores 

After using GMM (fitted 

with all training samples) 

After using GMM (fitted 

with correctly identified 

training samples) 

Accuracy (%) 98.923±0.378 98.669±0.431 98.799±0.439 

Kappa statistics 0.983±0.006 0.979±0.007 0.981±0.007 

Sensitivity 

(%) 

A 97.536±0.971 97.552±1.088 97.474±1.074 

B 99.509±0.360 98.893±0.563 99.353±0.548 

C 99.081±0.513 99.176±0.525 98.961±0.519 

Precision 

(%) 

A 98.081±0.905 97.010±1.452 97.640±1.256 

B 98.694±0.503 99.002±0.455 98.693±0.542 

C 99.928±0.197 99.453±0.464 99.868±0.221 

F-measure 

(%) 

A 97.805±0.740 97.272±0.906 97.551±0.894 

B 99.099±0.370 98.946±0.392 99.021±0.424 

C 99.502±0.263 99.312±0.268 99.412±0.289 

training time (s) 0.029±0.003 0.278±0.035 0.556±1.349 

test time (s) 0.005±0.000 0.007±0.001 0.007±0.002 

A-meningioma, B-glioma, C-pituitary tumor 
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Figure 8: Details of GUI developed. 

 

 

4 Discussion 

Our experiment shows that sigmoid function 

achieves best performance compared to other 

non-linear activation functions, which agrees 

with the previous work of [44]. This probably can 

be attributed to meaning feature mappings that is 

helpful for brain tumor types discrimination. 

It is also noted that sine and rbf activation 

function can become unstable if the number of 

features increases beyond a certain threshold. 

Below are likely justifications for the poor 

performances of these activation functions: 

 

- According to [45], RBF/Gaussian 

activation function can only achieve 

good results if the data approximately 

follows Gaussian distribution. 

Additionally, the values of hidden nodes 

(a and b) can have significant impact of 

the elements of H (matrix of hidden 

nodes’ outputs). If vector a is too far 

from x, or when b is too large, the zero 

percentage of H can be high. 

- Activation functions typically used in 

neural networks is monotonic. As 

pointed out in [46], neurons learn to 

respond to particular regularity, in which 

stronger positive correlation with the 

input corresponds to stronger (or equal) 

activation and vice versa. Sine function, 

being a sinusoidal (non-monotonic) 

function, activations of hidden nodes 

may oscillate between stronger and 

weaker activations. This condition may 

not be desirable if for example, two 

similar instances (close to each other in 

Euclidean space) that belong to same 

class may have very different projection 

in H. This helps to explain the large 

variation seen in performance measures 

when different set of data is used for 

training and test. 

 

The GUI developed do not require any user input 

parameters, but the images loaded must be 

attached with segmented tumor region. The 

probability estimates of each class is computed 

based on Bayes’ theorem stated in section 2.6, 

using the 𝑝(𝑡|𝐶𝑖)  calculated from fitted GMM 

during training phase. Table 8 shows comparison 

with other findings in literature using same dataset 

and performing the same classification tasks. 

 

 

 

https://journals.aijr.in/index.php


171 
 

ISSN: 2456-7132 
Available online at Journals.aijr.in 

Effective and Efficient LDA+ELM Model for Supervised Classification of Brain Tumor Types Using 2D MRI Scans 

Table 8: Previous works using same dataset and 

performing the same classification tasks. 

Authors Classifiers Feature input Accuracy  

[47] Deep neural 

network 

Downsampled 

to 64 × 64 

window from 

images 

95.6% 

[48] Convolutional 

neural 

networks 

Original 

images 

94.2% 

[49] Capsule 

networks 

Downsampled 

64 × 64  raw 

image patches. 

86.56% 

[50] Capsule 

netwoks 

(DCNet ++) 

Downsampled 

64 × 64  raw 

image patches. 

87.5% 

[11] ANN Statistical 

features from 

DWT and 

Gabor filter 

91.9% 

[51] Kernel ELM Representation 

learning using 

CNN with 

28 × 28 

image patches 

as input. 

93.68% 

[20] SVM BoW model 

with region 

partitioning 

91.28% 

Our 

work 

ELM 5 LDA 

features 

extracted 

augmented 

tumor region 

98.92% 

5 Conclusions 

Multi-class brain tumor categorization was 

performed by LDA+ELM model, alongside 

multiple feature descriptors. Several activation 

functions were experimented and it was found 

that sigmoid activation function achieves the 

highest generalization performance with accuracy 

of 98.92% by using only 5 LDA attributes. The 

performance of our proposed model is 

comparable or better than previous works on the 

same data, performing the same classification 

task. By fitting GMM model on training data, 

posterior probability estimates for test data can 

be obtained. Eventually, a user-friendly GUI is 

developed based on the optimal pipeline. 

Further study should be oriented towards 

development of statistical models (supervised 

learning models) that can perform online 

incremental learning, as medical image data 

normally come one by one or chunk by chunk. 

6 Declarations 

6.1 Study Limitations 

This study just focuses on contrast enhanced T1-

weighted MR images, thus the results may not be 

extended to other imaging modalities. Another 

limitation of this research is that no external 

validation dataset to evaluate performance of 

proposed model on unknown data from other 

source (e.g. different MRI machine and its 

parameters as well different patients). 

6.2 Acknowledgements 

We would like to express gratitude to Universiti 

Teknologi Malaysia (UTM) for providing the 

required software (MATLAB R2019a) in this 

research. 

6.3 Competing Interests 

Not applicable. 

How to Cite this Article: 

L. Jia Qi and N. Alias, “Effective and Efficient 

LDA+ELM Model for Supervised Classification of Brain 

Tumor Types Using 2D MRI Scans”, Int. Ann. Sci., vol. 9, 

no. 1, pp. 160-173, Jul. 2020. doi:10.21467/ias.9.1.160-

173 

References 

[1] E. I. Zacharaki et al., "Classification of brain tumor 
type and grade using MRI texture and shape in a 

machine learning scheme," (in eng), Magnetic 

resonance in medicine, vol. 62, no. 6, pp. 1609-1618, 
2009. 

[2] C. Parmar, J. D. Barry, A. Hosny, J. Quackenbush, and 

H. Aerts, "Data Analysis Strategies in Medical 
Imaging," (in eng), Clin Cancer Res, vol. 24, no. 15, 

pp. 3492-3499, Aug 1 2018. 

[3] R. J. Gillies, A. R. Anderson, R. A. Gatenby, and D. 
L. Morse, "The biology underlying molecular imaging 

in oncology: from genome to anatome and back 

again," (in eng), Clinical radiology, vol. 65, no. 7, pp. 

517-521, 2010. 

[4] D. Mortazavi, A. Z. Kouzani, and H. Soltanian-Zadeh, 
"Segmentation of multiple sclerosis lesions in MR 

images: a review," (in eng), Neuroradiology, vol. 54, 

no. 4, pp. 299-320, Apr 2012. 
[5] N. Nabizadeh and M. Kubat, "Brain tumors detection 

and segmentation in MR images: Gabor wavelet vs. 

statistical features," Computers & Electrical 
Engineering, vol. 45, pp. 286-301, 2015/07/01/ 2015. 

[6] E. I. Zacharaki, V. G. Kanas, and C. Davatzikos, 

"Investigating machine learning techniques for MRI-

https://journals.aijr.in/index.php
https://doi.org/10.21467/ias.9.1.160-173
https://doi.org/10.21467/ias.9.1.160-173


172 
 

ISSN: 2456-7132 
Available online at Journals.aijr.in 

Qi et al., Int. Ann. Sci.; Vol. 9, Issue 1, pp: 160-173, 2020 

based classification of brain neoplasms," (in eng), 

International journal of computer assisted radiology 

and surgery, vol. 6, no. 6, pp. 821-828, 2011. 

[7] J. Sachdeva, V. Kumar, I. Gupta, N. Khandelwal, and 
C. K. Ahuja, "Segmentation, feature extraction, and 

multiclass brain tumor classification," (in eng), 

Journal of digital imaging, vol. 26, no. 6, pp. 1141-
1150, 2013. 

[8] P. Svolos et al., "Investigating brain tumor 

differentiation with diffusion and perfusion metrics at 
3T MRI using pattern recognition techniques," (in 

eng), Magn Reson Imaging, vol. 31, no. 9, pp. 1567-

77, Nov 2013. 
[9] K. M. Priya, S. Kavitha, and B. Bharathi, "Brain tumor 

types and grades classification based on statistical 

feature set using support vector machine," in 2016 
10th International Conference on Intelligent Systems 

and Control (ISCO), 2016, pp. 1-8. 

[10] A. Jayachandran and R. Dhanasekaran, "MULTI 
CLASS BRAIN TUMOR CLASSIFICATION OF 

MRI IMAGES USING HYBRID STRUCTURE 

DESCRIPTOR AND FUZZY LOGIC BASED RBF 

KERNEL SVM," Iranian Journal of Fuzzy Systems, 

vol. 14, no. 3, pp. 41-54, 2017. 

[11] M. R. Ismael and I. Abdel-Qader, "Brain Tumor 
Classification via Statistical Features and Back-

Propagation Neural Network," in 2018 IEEE 
International Conference on Electro/Information 

Technology (EIT), 2018, pp. 0252-0257. 

[12] A. Krizhevsky, I. Sutskever, and G. Hinton, 
"ImageNet Classification with Deep Convolutional 

Neural Networks," Neural Information Processing 

Systems, vol. 25, 01/01 2012. 
[13] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, 

and R. Salakhutdinov, "Dropout: A Simple Way to 

Prevent Neural Networks from Overfitting," Journal 
of Machine Learning Research, vol. 15, pp. 1929-

1958, 06/01 2014. 

[14] Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," 
(in eng), Nature, vol. 521, no. 7553, pp. 436-44, May 

28 2015. 

[15] Chuan Guo, Geoff Pleiss, Yu Sun, and K. Q. 

Weinberger, "On Calibration of Modern Neural 

Networks," in Proceedings of the 34 th International 

Conference on Machine Learning, PMLR 70, 2017., 
Sydney, Australia, 2017. 

[16] X. Jiang, M. Osl, J. Kim, and L. Ohno-Machado, 

"Calibrating predictive model estimates to support 
personalized medicine," (in eng), Journal of the 

American Medical Informatics Association : JAMIA, 

vol. 19, no. 2, pp. 263-274, Mar-Apr 2012. 
[17] B. Zadrozny and C. Elkan, Transforming classifier 

scores into accurate multiclass probability estimates. 

2002, p. 694. 
[18] L. Cosmides and J. Tooby, "Are humans good 

intuitive statisticians after all? Rethinking some 

conclusions from the literature on judgment under 
uncertainty," Cognition, vol. 58, no. 1, pp. 1-73, 

1996/01/01/ 1996. 

[19] E. Eirola et al., "Extreme Learning Machines for 
Multiclass Classification: Refining Predictions with 

Gaussian Mixture Models," in Advances in 

Computational Intelligence, Cham, 2015, pp. 153-

164: Springer International Publishing. 

[20] J. Cheng et al., "Enhanced Performance of Brain 

Tumor Classification via Tumor Region 
Augmentation and Partition," (in eng), PLoS One, vol. 

10, no. 10, p. e0140381, 2015. 

[21] J. Cheng et al., "Retrieval of Brain Tumors by 
Adaptive Spatial Pooling and Fisher Vector 

Representation," (in eng), PLoS One, vol. 11, no. 6, p. 

e0157112, 2016. 
[22] W. Yang et al., "Content-based retrieval of brain 

tumor in contrast-enhanced MRI images using tumor 

margin information and learned distance metric," (in 

eng), Med Phys, vol. 39, no. 11, pp. 6929-42, Nov 

2012. 

[23] S. A. Medjahed, A Comparative Study of Feature 

Extraction Methods in Images Classification. 2015, 
pp. 16-23. 

[24] I. Guyon, Andr, #233, and Elisseeff, "An introduction 

to variable and feature selection," J. Mach. Learn. 
Res., vol. 3, pp. 1157-1182, 2003. 

[25] L. Keyes and A. Winstanley, "Using moment 

invariants for classifying shapes on large-scale maps," 
Computers, Environment and Urban Systems, vol. 25, 

no. 1, pp. 119-130, 2001/01/01/ 2001. 

[26] H. Zhihu and L. Jinsong, "Analysis of Hu's moment 
invariants on image scaling and rotation," in 2010 2nd 

International Conference on Computer Engineering 

and Technology, 2010, vol. 7, pp. V7-476-V7-480. 
[27] A. Khotanzad and Y. H. Hong, "Invariant image 

recognition by Zernike moments," IEEE Transactions 

on Pattern Analysis and Machine Intelligence, vol. 12, 
no. 5, pp. 489-497, 1990. 

[28] D. v. P. P. Bhaskara Rao, Ch.pavan Kumar, "Feature 

extraction using zernike moments," International 

Journal of Latest Trends in Engineering and 

Technology vol. 2, no. 2, March 2013 2013. 

[29] C. Singh and R. Upneja, "Accurate calculation of high 
order pseudo-Zernike moments and their numerical 

stability," Digital Signal Processing, vol. 27, pp. 95-
106, 2014/04/01/ 2014. 

[30] N. Dalal and B. Triggs, "Histograms of oriented 

gradients for human detection," in 2005 IEEE 
Computer Society Conference on Computer Vision 

and Pattern Recognition (CVPR'05), 2005, vol. 1, pp. 

886-893 vol. 1. 
[31] T. Ojala, M. Pietikainen, and T. Maenpaa, 

"Multiresolution gray-scale and rotation invariant 

texture classification with local binary patterns," IEEE 
Transactions on Pattern Analysis and Machine 

Intelligence, vol. 24, no. 7, pp. 971-987, 2002. 

[32] D. Cai, H. Bao, and X. He, "Sparse concept coding for 
visual analysis," in CVPR 2011, 2011, pp. 2905-2910. 

[33] Q. Gu, Z. Li, and J. Han, "Linear Discriminant 

Dimensionality Reduction," in Machine Learning and 
Knowledge Discovery in Databases, Berlin, 

Heidelberg, 2011, pp. 549-564: Springer Berlin 

Heidelberg. 
[34] H. Guang-Bin, "Learning capability and storage 

capacity of two-hidden-layer feedforward networks," 

IEEE Transactions on Neural Networks, vol. 14, no. 
2, pp. 274-281, 2003. 

[35] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, "Extreme 

learning machine: Theory and applications," 
Neurocomputing, vol. 70, no. 1, pp. 489-501, 

2006/12/01/ 2006. 

[36] P. L. Bartlett, "The sample complexity of pattern 
classification with neural networks: the size of the 

weights is more important than the size of the 

network," IEEE Transactions on Information Theory, 
vol. 44, no. 2, pp. 525-536, 1998. 

[37] G.-B. Huang, X. Ding, and H. Zhou, "Optimization 

method based extreme learning machine for 
classification," Neurocomputing, vol. 74, no. 1, pp. 

155-163, 2010/12/01/ 2010. 

[38] A. Hoerl and R. Kennard, "Ridge Regression: Biased 

Estimation for Nonorthogonal Problems," 

Technometrics, vol. 12, pp. 55-67, 04/09 2012. 

[39] G. Huang, H. Zhou, X. Ding, and R. Zhang, "Extreme 
Learning Machine for Regression and Multiclass 

Classification," IEEE Transactions on Systems, Man, 

and Cybernetics, Part B (Cybernetics), vol. 42, no. 2, 
pp. 513-529, 2012. 

[40] G.-B. Huang, "Extreme Learning Machines (ELM); a 

survey. Int. J. Mach. Learn. & Cyber. 2, 107–122 
(2011). https://doi.org/10.1007/s13042-011-0019-y 

[41] M. Sokolova and G. Lapalme, "A systematic analysis 

of performance measures for classification tasks," 

https://journals.aijr.in/index.php


173 
 

ISSN: 2456-7132 
Available online at Journals.aijr.in 

Effective and Efficient LDA+ELM Model for Supervised Classification of Brain Tumor Types Using 2D MRI Scans 

Information Processing & Management, vol. 45, no. 

4, pp. 427-437, 2009/07/01/ 2009. 

[42] F. J. Provost, T. Fawcett, and R. Kohavi, "The Case 

against Accuracy Estimation for Comparing Induction 
Algorithms," presented at the Proceedings of the 

Fifteenth International Conference on Machine 

Learning, 1998.  
[43] Z. Zhang, "Introduction to machine learning: k-

nearest neighbors," (in eng), Annals of translational 

medicine, vol. 4, no. 11, pp. 218-218, 2016. 
[44] W. Cao, J. Gao, Z. Ming, and S. Cai, "Some Tricks in 

Parameter Selection for Extreme Learning Machine," 

IOP Conference Series: Materials Science and 
Engineering, vol. 261, p. 012002, 10/01 2017. 

[45] S. Liu, L. Feng, Y. Xiao, and H. Wang, "Robust 

activation function and its application: Semi-
supervised kernel extreme learning method," 

Neurocomputing, vol. 144, pp. 318-328, 2014/11/20/ 

2014. 
[46] G. Parascandolo, H. Huttunen, and T. Virtanen, 

"Taming the waves: sine as activation function in deep 

neural networks," in ICLR, 2017. 

[47] N. Ghassemi, A. Shoeibi, and M. Rouhani, "Deep 

neural network with generative adversarial networks 

pre-training for brain tumor classification based on 
MR images," Biomedical Signal Processing and 

Control, vol. 57, p. 101678, 2020/03/01/ 2020. 
[48] A. Kabir Anaraki, M. Ayati, and F. Kazemi, 

"Magnetic resonance imaging-based brain tumor 

grades classification and grading via convolutional 
neural networks and genetic algorithms," 

Biocybernetics and Biomedical Engineering, vol. 39, 

no. 1, pp. 63-74, 2019/01/01/ 2019. 
[49] P. Afshar, A. Mohammadi, and K. Plataniotis, Brain 

Tumor Type Classification via Capsule Networks. 

2018. 
[50] R. P. Sai Samarth, Apoorva Sikka, Abhinav Dhall and 

Deepti Bathula, "Dense and Diverse Capsule 

Networks:Making the Capsules Learn Better," 
Available: https://arxiv.org/pdf/1805.04001.pdf 

[51] A. Pashaei, H. Sajedi, and N. Jazayeri, "Brain Tumor 

Classification via Convolutional Neural Network and 

Extreme Learning Machines," in 2018 8th 

International Conference on Computer and 

Knowledge Engineering (ICCKE), 2018, pp. 314-319. 

 

 

 

Publish your research article in AIJR journals- 

❖ Online Submission and Tracking 

❖ Peer-Reviewed 

❖ Rapid decision 

❖ Immediate Publication after acceptance 

❖ Articles freely available online 

❖ Retain full copyright of your article. 
Submit your article at journals.aijr.in  

Publish your books with AIJR publisher- 

❖ Publish with ISBN and DOI. 

❖ Publish Thesis/Dissertation as Monograph. 

❖ Publish Book Monograph. 

❖ Publish Edited Volume/ Book. 

❖ Publish Conference Proceedings 

❖ Retain full copyright of your books. 
Submit your manuscript at books.aijr.org 

https://journals.aijr.in/index.php
https://arxiv.org/pdf/1805.04001.pdf
https://journals.aijr.in/
https://books.aijr.org/

	ABSTRACT
	1 Introduction
	2 Research Methodology
	2.1 2D MRI scans acquisition
	2.2 Tumor region augmentation
	2.3 Feature extraction
	2.4 LDA feature reduction
	2.5 ELM classifier
	2.6 GMM
	2.7 Performance evaluation

	3 Results
	4 Discussion
	5 Conclusions
	6 Declarations
	6.1 Study Limitations
	6.2 Acknowledgements
	6.3 Competing Interests

	How to Cite this Article:
	References

