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ABSTRACT  

This paper elucidates a trend in solving nonlinear oscillators of the rotating Kelvin-Helmholtz 

instability. The system is constituted by the vertical flux or the horizontal flux. He’s multiple-scales 

perturbation methodology has been applied and therefore the system is represented by a generalized 

homotopy equation. This approach ends up in a periodic answer to a nonlinear oscillator with high 

nonlinearity. The cubic-quintic nonlinear Duffing equation is obligatory as a condition to uniformly 

answer. This equation is employed to derive the stability criteria. The transition curves are plotted to 

investigate the stability image. It's shown that the angular velocity suppresses the instability. The 

tangential flux plays a helpful role, whereas the vertical field encompasses a destabilizing influence. 

Within the existence of the rotation, the velocity ratio reduces stability configuration. 
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1 Introduction 

During the past years, the study of fluids 

among the rotation has additional and 

additional occupied the attention of fluid 

mechanics Associate degree understanding of 

rotating fluids is vital once trying to elucidate or 

predict region or oceanographic phenomena. 

Evidently, it's the premise to any state of affairs 

encountered by astrophysicists, and it's vital in 

respondent technical queries that vary from the 

centrifuge to the spinning shell. Several 

mathematical, numerical and empiric research is 

formed to rotating fluids as an outcome of that 

the topic presently incorporates a considerable 

basis, a foundation, what's over the properly 

trained hydraulics got to perceive despite the very 

fact that rotating fluids [1]. 

Effects of rotation on doubly disseminate fluid 

systems notice application in numerous branches 

of recent science like biochemistry, earth science, 

stellar convection, etc. Pearlstein [2] has offered a 

rapid survey of necessary findings of various 

researchers in these fields. It's discovered that 

rotation, in general, enhances the convective 

stability of a double-diffusive fluid, except for 

certain Darcy-Taylor numbers, Darcy-Prandtl 

numbers and Darcy-Schmidt numbers it 

performs a destabilizing action for such a 

fluid. 

Another branch of science during which rotation 

plays a very important role is geology. It's noted 

that the earth’s crust consists of a combination of 

various kinds of fluids like oil, water, gases, etc. 

The temperature will increase joined go within. 

Also, the constant angular velocity of the world 

with regard to its geographical axis offer 

increases to force. Therefore, any commit to 

studying convective currents in energy systems 

can cause the matter of finding the impact of 

turnover on the stabilization of a 

multicomponent fluid, the elements of which 

might diffuse relative to at least one another [3]. 

The atmosphere and ocean have such a big 

amount of fluid-dynamical properties in common 

that the study of one usually enriches our 

understanding of the opposite. Geology fluid 

dynamics is that the subject whose 

considerations fundamental the basic slashing 

ideas essential to an associated understanding of 
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the atmosphere and ocean. In theory, though, 

earth science, fluid dynamics deals with all 

conferment fluid motions [4]. Comprehensive 

inspection in various situations of the effect of 

revolution on the stabilization of the 

atmospheres of stellar and planetary systems has 

been included and established in the literature. 

It's necessary to think about that the model fluid 

is stratified which the angular rate is parallel. In 

stars and planets, completely different 

atmosphere section is familiarized in several 

directions with relevancy the rotation axis 

whereas gravity continually remains 

perpendicular to them. In these fluid layer 

sections; the angular rate vector could also be 

separated into one part parallel to the fluid layer 

and another one perpendicular to it. Besides, it's 

recognized that the field performs a serious role 

in ionizing atmospheres, and its together 

determinant in hydromagnetic stability [5]. 

Rotation and curvature square measure necessary 

factors that modify stability and flow structure 

and this have motivated studies in each stability 

analysis and turbulence modeling. It's usually 

accepted that the force plays a helpful or 

destabilizing influence on shift or a turbulent 

plane flows found in Turbomachinery, geology 

or astronomy, like shear flows or massive scale 

vortices [6]. 

In recent years, the class of disability has been 

extended by the interest in fluid mechanics flows 

of electrically conducting fluids among the 

presence of magnetic fields. This could be the 

branch of fluid mechanics coupled with the 

magnetodynamic, and there are problems with 

hydromagnetic stability as there are problems 

with mechanical stability. For roughly a century 

ago, fluid mechanics, stability have been 

recognized united on the central issues of fluid 

mechanics. The essential issues of fluid 

mechanics, stability was recognized and 

developed within the nineteenth century, notably 

by John William Strutt, Kelvin, Helmholtz, and 

Reynolds. To realize a wider understanding of 

fluid mechanical stability, it's useful to sketch a 

number of the vital physical mechanisms of 

instability. Broadly, one could say that instability 

happens as an outcome of there's some 

disturbance of the equilibrium of the external 

forces, inertia and viscous stress of a fluid. The 

external forces of interest are buoyancy in a very 

fluid of variable density, physical phenomenon, 

magnetohydrodynamic forces, 

electrohydrodynamic forces, etc. If an important 

fluid rests higher than lightweight fluid, it's clear 

that the fluids tend to overturn underneath the 

action of gravity. An identical instability happens 

on the free surface of an instrument of liquid 

once it's rapt down at a standardized acceleration 

larger than the gravitational acceleration. 

The dynamics of wave motion are of nice 

importance in physical investigations, as wave 

motion constitutes one among the principal 

modes of transmission of energy. The energy 

received from the sun is ancestral by waves 

during the ether and consequently the energy of 

sound by airwaves. A wave means that the 

continual transference of a specific state or from 

one a part of a medium to a different. This will 

imply the transference of the medium itself from 

one area to a different, however, just the 

propagation through it's of a specific kind, state 

or condition. The waves because of little periodic 

motions that surface and akin to the surface of a 

vast sheet of fluids are referred to as surface 

waves [7]. 

The free surface of fluid throughout associate 

equilibrium state in a very field could also be a 

plane. If the surface is affected by its equilibrium 

position at some purpose, the motion can occur 

within the fluid under the work of some external 

perturbation. This motion due to be propagated 

over the whole surface at intervals the sort of 

waves that are observed as gravity waves. The 

deformability of the free surface ends up 

in capillary-gravity waves that rely upon forces 

tending to come the ill-sharpen surface to its 

equilibrium plane unless we supply enough 

energy to overcome the viscosity inertia enabling 

overshooting of the Laplace overpressure and 

thus damped oscillations to occur. These cress 

waves can rely solely slightly on the exchange of 

substance between the majority and therefore the 

interface [8]. 

The KHI has attracted the eye of the many 

researchers due to its determinant impact on the 

stabilization of planetary and stellar atmospheres 

and alternative sensible applications. The study 
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of the KHI encompasses a protracted history 

in hydrodynamics. Melcher [9] mentioned the 

influence of each vertical and horizontal electrical 

field on Kelvin-Helmholtz for incompressible 

flow within the presence of physical 

phenomenon impact. The linear instability of the 

KH drawback is investigated by Chandrasekhar 

[10]. He mentioned the impact of natural 

phenomenon, variable density, rotation and 

applied the force field on the behavior of the 

stability. The linear magnetohydrodynamic KHI 

was studied by Alterman [11] once a system 

consists of two streaming fluids beneath the 

gravity and stressed by a horizontal force field. 

El-Sayed [12, 13] combined the influence of 

applied electrical fields or oblique electrical fields 

and uniform rotation on the KHI drawback. He 

demonstrated that the Coriolis forces, as well 

as, the streaming velocities, have a 

destabilizing influence. 

The nonlinear development of the KHI in ideal 

fluids has been dispensed by Drazin [14] and 

Nayfeh and Saric [15] for the case wherever the 

amplitude of an unstable wave is uniform in 

space and growing solely in time. Afterward, 

Weissman [16] extended the on top of work by 

treating the case wherever the amplitude of an 

unstable wave relies on each time and area. Also, 

He examined the instability of the system close 

to the crossroads within the parameter area and 

for regions of linear instability. He found the 

corrections of Nayfeh and Saric’s results [15]. El-

Dib [17] studied the nonlinear KHI for magnetic 

fluids. The fluids are stressed by a relentless 

tangential field and vertical periodic acceleration. 

He found that the field, the velocities and also 

the frequency of the applied periodic force play 

twin roles within the resonant region.  

     The nonlinear  instability of a  surface  wave  

of  a  streaming  magnetic  incompressible  fluid  

associate degree a stratified subsonic gas was 

investigated by Zakaria [18]. KHI in an 

exceedingly very fluid Layer finite on top of a 

porous medium and a rigid surface lies below in 

the existence of field has been investigated by 

Chavaraddi et al. [19]. In [20] Chavaraddi et al., 

have studied the electrohydrodynamic KHI 

instability in an exceedingly very fluid layer finite 

on top of a porous medium and by a rigid 

surface below. The target of this paper is to 

review the impact of Kelvin-Helmholtz 

separation between two viscous conducting 

fluids in a very transversal field through a porous 

medium within the existence of the results of 

physical phenomenon victimization B-J 

condition at the interface, among others. 

The present work is performed to look at the 

nonlinear stability behavior of two rotating 

magnetic fluids that are in relative horizontal 

motion. The system is subjected by a continuing 

applied vertically a force field, on the interface 

through the two fluids. Also, the impact of the 

horizontal magnetic field is investigated. In the 

simplest of our information, this downside has 

not antecedently been investigated. The 

linearized downside has been incontestable 

beneath horizontal rotation and magnetic fields 

by Davalos-Orozco [21]. We've got to target 

during this work on a weak nonlinear approach 

that's supported neglecting the nonlinear terms 

of equations of motion and applying the passable 

boundary conditions whilst not drop the 

nonlinear terms. At this step, the dispersion 

relation should be expanded to combine 

nonlinear terms. This approach has been 

successfully applied by El-Dib et al. [22]. This 

approach ends up extending the well–known 

Chandrasekhar dispersion relation [10] to 

combine nonlinear terms of the surface elevation. 

Then the dispersion relation containing nonlinear 

terms springs in order that it depends not solely 

on the frequency and therefore the wave number 

for the wavetrain of the linear solution however 

also on the amplitude of this wavetrain solution. 

This conclusion of the nonlinear dispersion 

relation looks alike those aforesaid in Whitham 

[23]. Perturbation with He’s multiple scale has 

been applied [24-26] and that we have derived 

the nonlinear cubic-quintic Duffing equation 

with real coefficients. Finally, the stability criteria 

are measure mentioned diagrammatically and 

analytically. 

2 Formulation of the Problem 

The interface of flow in equilibrium throughout a 

field could also be a plane. If the surface is 

excited from its equilibrium position to some 

purpose, the motion will come inside the fluid 

https://journals.aijr.in/index.php


He’s Multiple-Scale Solution for the Three-dimensional Nonlinear KH Instability of Rotating Magnetic Fluids 

55 
 
 

 ISSN: 2456-7132  
Available online at Journals.aijr.in 

through the work of some external perturbation. 

This motion can increase over the complete 

surface within the variety of waves. The 

deformability of the free surface ends up in 

capillary-gravity waves that rely upon forces 

tending to come the ill-sharpen surface to its 

equilibrium plane form unless we tend to offer 

enough energy to beat the body inertia 

sanctionative overshooting of the mathematician 

atmospheric pressure and therefore permit 

damped oscillations to occur. These transversal 

waves can act between the majority and therefore 

the interface [10]. 

    The model system adopted consists of two 

semi-infinite magnetic inviscid incompressible 

homogenous and identical fluids separated by the 

horizontal interface .0=z  The higher and lower 

densities and magnetic permeableness of the 

fluids are ( )1)1( , and ( )2)2( , , severally. The 

fluids are streaming with constant horizontal 

velocities )1(
0u and )2(

0u  wherever the superscripts 

(1) and (2) check with the higher and therefore 

the lower fluid, severally. The fluids are impacted 

by the gravity force associate by uniform rotation 

concerning the axis with associate angular 

velocity  . The system is subjected by an 

external horizontal magnetic vertical magnetic 

field or the vertical magnetic field acting at the 

negative z-direction. The uniform fields 
)1(H  

and 
)2(H settled at interval 1 and 2, are higher 

than and blower than the interface, severally. 

,0=t Owing to the behavior of random surface 

stress, the interface of separation is slightly 

malformed from this steady configuration. These 

random stresses are caused by mechanical or 

magnetic perturbations. The random stress-

induced perturbation within the interface z = 0 

causes a displacement of the fabric particles of 

the fluid system from their equilibrium locations. 

This displacement could also be delineated by 

),,( tyxz = .                                                   (1) 

Let the interface of the fluid is considered as the 

position of points satisfying the relation 

( ) ( ) ,0,,,,, =−= tyxztzyxS   then the identity 

normal vector n , to the interface is assumed as                                               

   2/1221
||

−
+++−−=




= yxzyyxx eee

S

S
n  , (2) 

Where x
e , 

y
e  and z

e  refer to the identity vectors 

in the x-, y- and z-directions.   

Maxwell equations for the application of the 

magnetic fields will be reduced to equations  

,0)(.
)()( =

jj H  (3)      

2,10
)(

== jH
j ,             (4) 

where   referring the magnetic permeability for 

the fluid phase and the superscript j to the fluid 

phase.   In conformity with the rightness of the 

quasi-static approximation, a potential function 

),,,( tzyx  is defined by  

                
.)()()( jjj

HH −−=                 (5) 

Clearly, the function ),,,( tzyx  satisfies 

Laplace's equation: 

                0)(2 = j .                     (6)   

The elemental equations governing the motion, 

for a bulk of magnetic fluid phases, are written 

within the type of rotation  in the form                                   

( )
21

2
( . ) 2( )

.z

V
V V V r

t

p g e


 





 
+  +  −   

 

= − −
 

                                                                  (7) 

Associated with the continuity equation: 

                            ,0= V                              (8)  

where p  is the hydrodynamic pressure,   is the 

density of the flow and ( )wvuV ,,=  represents 

the velocity of the fluid. The term )(2 V  in 

equation (7) represents the Coriolis force and the 

term ( )2

2

1 r  indicates to the centrifugal 

force where r refers to the position vector of any 

point of the fluid. The Coriolis term is 

beneficially introduced in the equation of motion 

in the state of the rotating frame of reference 

when the angular velocity   is uniform. 

The total pressure is defined as 
2

2
122

2
1 Hrp  −−= .                              (9) 
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The pure equilibrium configuration gives, 
( )

0

( ) ( ) ( ) ( ) ( )2 2 ( )1
0 02

( , , , )

2 ;

1,2,

j

j j j j j j

x y z t

g z u y r

j



   = − −  +  +

=

             (10) 

where )(
0

j  are the constants of integration. The 

balance of the normal stress tensor at the 

interface leads to: 

( )
2 2

(2) (1)

0 0

(2) (2) (1) (1) 2 (2) (1) 21
0 0 2

(2) (2) (1) (1)1
2

2 ( )

( ).

u u y r

H H

 

   

 

−

=  − −  −

+ −

         (11)    

2.1 Boundary Conditions 

It is convenient to enclose that ( )tzyx ,,,  is a 

finite function presented due to the perturbed 

interface and far from the interface, its influence 

vanishes. Therefore, both the partial derivative 

for ( )tzyx ,,,  with respect to yx, and z  must 

vanish as .→z , At the dividing surface, the 

following boundary conditions must be satisfied: 

(i) The continuity of the normal component of 

the magnetic displacement at the surface of 

separation is 

    ( ) ( ) ( ) ( )( ) .,0.
2211  ==− zHHn                (12) 

This leads to               

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

1 1 2 2 1 1 2 2

1 1 2 2
0, .

x x x y y y

z z z

         

    

− + −

− − = =

                                                                      (13) 

(ii) The continuity of the tangential component 

of the magnetic field is assumed at the interface  

=z . Thus,        

                  ( ) ( )( ) .,021 ==− zHHn         (14) 

It yields that 

)5(1  
( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

1 2 1 2

1 2 1 2
0, .

y x z z

y y x x

H H

z

   

    

 − − + −
 

+ − − − = =

      

 

(iii) At the dividing surface, the velocity field 

vu, and w are subject to the following boundary 

condition:                        
( ) ( ) ( ) ( )

0( ) ,

1,2, .

j j j j

t x yw u u v

j z

  



= + + +

= =
       (16) 

This equation comes across the given tool 

character of the dividing surface. Far from the 

interface, the fluid velocity vanishes. Thus, 

                  ( )( ) .0,,, = tyxV
j                      (17) 

(iv) At the interface, the hydro stress and the 

magnetic forces must be balanced. The 

composition of these depends on the 

hydrodynamic pressure, surface tension effects 

and magnetic stresses. The magnetic stresses 

result from the magnetization forces [27] and 

[28]. Thus, the normal composition of the stress 

tensor ij   is discontinuous at the interface by 

the surface tension, i.e. 

( ) ( )( ) ,,..
21

 ==− znFFn T                       (18) 

where F is the force vector acting on the 

interface, the surface tension coefficient is 

denoted by the parameter T and ij given by 

,2

2
1

ijjiijij HHH  −+−=                    (19) 

where is the total pressure. 

3 Outlined Steps of Solutions 

The linear stability analysis as given by 

Chandrasekhar [10] depends on quit the 

nonlinear terms from the equations of motion 

furthermore as from the boundary conditions. 

Therefore, a dispersion relation ought to have 

got without nonlinear terms. The concept of the 

weak nonlinear approach is slightly departed 

from the dimensionality technique. At this state, 

the nonlinear downside can contain the linear 

description with some further terms that build a 

correction of the most solution. The nonlinear 

description given here depends on quit the 

nonlinear terms from the equations of motion 

and applying the agreeable boundary conditions 

involving the nonlinearity. Therefore, the 

Chandrasekhar dispersion relation ought to be 

elongated to combine the nonlinear terms. 

To solve the linear form of the equations of 

motion for the fluid phases, three-dimensional 

finite disturbances are introduced to the 
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boundary worth downside. We tend to suppose 

there's a standardized monochromatic wave train 

propagating on the interface such that: 

                    ,.),,( ccetyx tiik += −              (20) 

where c.c. represents complex conjugate for 

preceding terms, the amplitude   is an 

integration constant which locates the behavior 

of the perturbed of the interface,   is the 

frequency of the perturbed and 1−=i . The 

spatial variable is kykxk yx /)( += . The 

wavenumber k  is defined as 22
yx kkk += , 

which is assumed to be real and positive. Similar 

Fourier criteria, we may suppose that the bulk 

solutions are of the form: 

    ,)(ˆ),,,( tiikezVtzyxV  −=               (21)   

             tiikeztzyx  −= )(ˆ),,,( ,                 (22)                                                         

             
tiikeztzyx  −= )(ˆ),,,( .                (23) 

In view of equations (21) through (23), the 

components of equations (7) and (8) take the 

form: 

           ,ˆˆ2ˆ)( 0  xx ikvuuki −=−−            (24) 

          ,ˆˆ2ˆ)( 0  yx ikuvuki −=+−             (25)                                                   

          
dz

d
wuki x




ˆ
ˆ)( 0 −=− ,                          (26)                                                                        

          dz

wd
vikuik yx

ˆ
ˆˆ −=+ .                                (27) 

Equations (24), (25) and (27) yield:

                 

dz

wd

ukk

uki

x

x
ˆ

)(

4
1

)(
ˆ

2
0

2

2

0















−


−

−−
=




 .         (28) 

Combining equations (26) and (28), we obtain: 

                     
,0ˆ

ˆ 2

2

2

=− wq
dz

wd
                 (29) 

where   

       2,1
)(

4
1

2/1

2)(
0

2
)( =















−


−=

−

j
uk

kq
j

x

j


.  (30) 

Using the kinematic boundary condition (16), the 

continuity equation (8) and applying the 

Maclaurin series at z = 0, we obtain the solution 

of equation (29) gives the perturbation of the 

vertical velocity component in the form                                   

0;
)1(

)(
),,,(

)1(

)1(

)1(
0)1( 

−

−
= − ze

q

uki
tzyxw zqx




,    (31) 

0;
)1(

)(
),,,(

)2(

)2(

)2(
0)2( 

+

−
= ze

q

uki
tzyxw zqx




.     (32) 

In light of the equation (28), the pressure 

distributions in the two fluid phases are:                                  

0;
)1(

)(
),,,(

)1(

)1()1(

2)1(
0

)1(
)1( 

−

−
−= − ze

qq

uk
tzyx zqx




 ,   

                                                                 (33)  

0;
)1(

)(
),,,(

)2(

)2()2(

2)2(
0

)2(
)2( 

+

−
= ze

qq

uk
tzyx zqx




 .  

                                                                (34) 

To derive the solution for the magnetic function

( )tzyx ,,, , we insert (23) into the Laplace 

equation (6), for using both conditions (13) and 

(15), the resulting solution is                             

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
,0,

1
,,,

21

21
11 

−













+

−
= − ze

k
Htzyx kz










                                                                      (35) 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
,0,

1
,,,

21

21
22 

+













+

−
−= ze

k
Htzyx kz










   

                                                                       

(36) 

The distributions for the fluid velocity 

components )( ju and )( jv , the hydrodynamic 

pressure )( j  and the magnetic functions )( j , 

both contain nonlinear terms as a function in the 

elevation amplitude . This nonlinear depiction is 

due to the application of nonlinear boundary 

conditions. As the nonlinear terms are dropped, 

the linear profile got, and it is equivalent to those 

obtained earlier by Chandrasekhar [10] and by 

El-Sayed [13] for a general oblique electric field. 

A solution to the equation of motion cited before 

is accomplished by utilizing the convenient 

nonlinear precondition. At the interface between 

fluids, the fluids and therefore the magnetic flux 

should be balanced. The elements of those 

stresses comprise fluid mechanics, pressure, 

velocities, stresses, physical phenomenon 

stresses, rotation velocities, and magnetic 

stresses. 

4 Nonlinear dispersion relation 

In order to derive the nonlinear characteristic 

equation, we have a tendency to shall use an 

equivalent procedure utilized by Chandrasekhar 

[10]. To get the linear dispersion relation, 

however, while not ignoring the nonlinear terms 
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of the elevation parameter , we have a tendency 

to substitute from equations (31) through (36) 

into equation (18). Hence, we have: 
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                                                                       (37) 

where the notion ⊥H  is named the 

performance of the conventional force 

field that given by 

               

( ) ( )( )
( ) ( )21

221
)2()1(






+

−
=⊥ HHH .          (38) 

On the other side, if the system is impacted by a 

horizontal magnetic field such that z
eHH 0=

then the same characteristic equation will be 

obtained except that the term ⊥H should be 

replaced by 

              

( ) ( )( )
( ) ( ) ,

21

221
2
0||






+

−
−= HH                   (39) 

where the notion H denotes the horizontal 

magnetic term. The parameter 1−=J  in the 

stage of the vertical field, while 1=J  referring to 

the application of a tangential magnetic field. 

   Equation (37) represents an amplification of 

the famous Chandrasekhar's dispersion relation 

[10], by inclusive some higher-order terms of the 

amplitude parameter . It is more general than 

those obtained by Davalos-Orozco [21] and El-

Sayed [12, 13]. In the case of non-rotated fluids, 

it reduces for streaming electrified viscous fluids 

over porous media by Mohamed [29].  

 

The linear form of the system (37) is performed 

as all the second powers or higher are tends to 

zero 

( ) ( )1 2

(1) 2 (2) 2

0 0(1) (2)
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 + − + − 

(40) 

which is in the transcendental form. In the light 

of a slow rotating fluid, the square root (30) can 

be expanded applying the binomial theory to 

become 

              

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
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uk
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At this state, the primary dispersion relation is 

found to be 

( ),2)()(),,( 222)2()1(
 +−−+ ukkkD xyx  

                                                                    
(42) 

where the following notion is used: 

                   
.
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+

+
= uu

u                 (43) 

The parameter 2
  is the surface frequency for 

KHI in the case of no rotation, such that: 

( )

(1) (2) 2

2 2 (1) (2)
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We first study equation (42) and so come back to 

equation (37) to include higher order dispersive 

effects. It ought to be noticed that equation (42) 

represents the linear dispersion relation that's 

glad by values of , 
xk  and  

yk . Within the 

equation (42),   seems like a square term solely, 

whereas, within the right-hand facet, it is real. 

Thus, the values of being either real or imagined. 

Once is imagined, an instability is expressed 

through the dependence of 
2 on the 

wavenumber k . However, stability happens once 

the angular rate satisfies the subsequent relation: 

                            
2

2
12

 .                    (45)    

In the case of no rotation, i.e. in the limiting case 

as 0→  the stability is found when the 

magnetic field satisfies the following relation: 

( )

3 (1) (2)

2 (1) (2)
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    (46) 

The on top of dispersion relation can scale back 

to those obtained by Davalos-Orozco [21] for 

streaming inviscid fluids underneath horizontal 

rotation and magnetic fields. Within the case of 

no field of force, the dispersion relation reduces 
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to the well-established strictly the inviscid 

dispersion relation given by Chandrasekhar [10] 

and reduces by El-Sayed [13] for streaming 

electrified inviscid rotation fluids. 

5 Construction of the homotopy nonlinear 

dispersion relation  

In this portion, we have a tendency to affect the 

examination of the influence of finite angular 

speed on the steadiness behavior. During this 

case, we have a tendency to could use the growth 

procedure obtained formally by the homotopy 

perturbation [30-35]. By introducing the 

homotopy parameter  1,0 , the homotopy 

equation admire equation (37) is created within 

the type  
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                                                                 (47) 

The homotopy construction built for the 

nonlinear system, composed of the primary part 

arises when ,0→  which can be easily solved, 

the reaming parts including the nonlinear terms. 

It is noted that the above homotopy equation 

(47) will become the original equation (37) as

.1→  By sought 1→ in the final approximate 

solution for the perturbation equations of 

equation (47) will become the solution of the 

original one. 

In view of the definitions (41) and (42), the 

application of the binomial theorem leads to 

expanding, the nonlinear dispersion relation (47) 

as an infinite power series in . Collecting the 

identical powers in , the above nonlinear 

dispersion relation may be rearranged as 

( ) ( )
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where L is a linear operator involving the partial 

derivative of t  and  ,  ),( kD
 
represents 

the primary dispersion relation which is 

corresponding to the differential equation: 

                   
( ) 0),(, = tL t  ,                     (49) 

The constant coefficients ij  that show in 

equation (48) are defined as: 
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     (50)  

5.1 The modulation for the linear 

dispersion relation of the He’s-

multiple scale technology 

In the linear approximation, the amplitude 
 is 

defined to be constant. Once nonlinearity is 

incorporated, it's treated as slowly varied operate 

of area and time. The existence of the harmonic 

wavetrain during a dispersive medium and also 

the correspondence between the wave number 

and frequency ends up in the dispersion relation 

(40). 

Introducing the wave parameter tk  −=

such that ),( t becomes )( and     
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At this stage, we may introduce a modulation to 

the problem so that the linear dispersion relation 

D (, kx, ky) indicates the slowly modulated 

wavetrain [36]. To do this, we may use the 

expansion procedure obtained formerly by the 

procedure of multiple scaling [37]. The 

underlying idea of the procedure of multiple 

scales is to make the expansion perform the 

solution of the problem, not only a function of 

one independent variable but also as a function 
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of two or additional independent variables which 

are referred to as scales. The independent 

variable  can be alternative, independent 

variables, that is;  

                  .2,1,0; == nn
n                (52) 

Thus, defining 0  as the variables appropriate to 

the fast variations and 21,  are the slow 

variables. The differential operators can now be 

expressed as the derivative expansions: 

        

...
2

2

10

+



+




+




=







d

d
          (53) 

The analysis then follows the usual perturbation 

procedure. In view of the above alternative, 

independent variables, the operator L have 

extended to: 
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Using Taylor’s theorem about ),,( yx kkD  and 

retains only terms up to )( 2O . Thus, we have 
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where the notations D and D  are 
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Expressing the expansion of the expanded 

operator (55) into equation (48) we get, 
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Now, using the homotopy expansion for the 

variable  so that it may be developed in the 

form 
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Substituting equation (58) into equation (55), 

then equating similar powers of   on both sides 

we obtain the following perturbed equations: 
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where the operator 0L is defined as 
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0
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In the smallest order approximation and in the 

view of (20), we may write the solution of 

equation (59) as:  
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We may now solve equations (60) and (61) in 

turn, noting that for each order greater than the 

zero, the non-secular conditions may be gotten 

by setting coefficient of 0i
e

 equal to zero in 

equations (59), (60) and (61). Thus, we have 

besides equation (59) the following conditions: 
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               (64) 

Without secular terms, the solution of equation 

(63) is uniformly valid and may be written in the 

form  
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where the non-zero denominator ( )kDn ,  

,...2,1,0; =n is defined as 

                      ( ).,nknDDn                         (66) 

The vanishing of the divisor refers to the second-

harmonic resonance. In general, harmonic 

resonance could exist if (, k) and (n (, nk) 

satisfies constant dispersion relation [37]. Once 

resonance happens, we discover that each the 

surface distortion and also the exited volume 

pulsation bear modulation. At actual resonance, 

solely modulation occurs and also the 

modulations are monotonic functions of time; 

the amount pulsation will increase because it 

attracts energy from the surface distortion mode. 

Near, but not at, resonance, energy is changed 

cyclically between the surface and volumetrically 
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modes; the oscillations during this case expertise 

each amplitude and phase modulation. However, 

the second-harmonic resonance happens at the 

points derived by solving the equations 02 =D

and 03 =D . They're going to satisfy the 

subsequent equations, respectively: 

,0)(3)(2 )2()1(2)2()1(3 =+−−+  kgk T  (67)                                  

.0)(8)(39 )2()1(2)2()1(3 =+−−+  kgk T (68) 

Employing (63) and (65) into (61) and removing 

the secular terms which leads to catching the 

following condition: 
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With this condition and in view of (65), the 

second-order solution has the form     
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The second-order approximate solution may be 

performed by employing (63), (65) and (70) into 

(58) and let 1→ , we obtain    
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In the above approximate solution, the amplitude 

( ) is still unknown and needs to be evaluated 

for the complete solution. 

5.2 Derivation of the complete wave-

solution 

To formulate the second-order complete 

solution, the amplitude equation will be 

constructed and solved. This requires to combine 

both the two solvability conditions (64) and (69).  

If we remove the term containing  
2
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
 from the 

condition (69), with the help of the condition 

(64), then the second-order solvability condition 

(69) will reduce to the form: 

2
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2 2

2 3 2

12 232

3

2
3

1 3
3 10 .

iD
D

D

D D


  



   

 
 = − 
  

  
+ − −     

         (72) 

Combine the first-order solvability condition (64) 

with the condition (72) and return to the original 

variable  . This can be accomplished by 

multiplying condition (64) by  and adding to 

condition (69) multiply, by 2 , then letting 1→ , 

the following cubic–quintic nonlinear Landau 

equation is obtained: 

     

2
211

21 12

2

2 3 2

12 232

3

2
3 3

1 3
3 10 .

d
iD

d D

D

D D


   



   

 
 = − − 

 

  
+ − −     

    (73) 

The polar form solution may be applied to solve 

the above nonlinear equation by introducing the 

following form: 

                 ,)()( )( ie=                  (74) 

with real )( and )( . Employing (74) into 

(73) and separating the real and imaginary parts, 

the solution of the resulting equations leads to 

                       ,)( 0
 ie−=                     (75) 

where 0 and 0 are arbitrary constants, while  

the frequency  is given by 
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(76) 

Inserting (75) into the wave-solution (71) we get         

( ) ( )

( )

( )

( ) ( ) .15cos
32

14cos

322
13cos

322

12cos4
22

1cos2
6

5
023

3

2
12

5

4
022

2

1211

3

1211

4

3
0

2
023

3

2
12

1221

2

2
11

3

2
011

2
022

3

1211

2

022

2

1211

0

























−













−+−














−++−




























+−














−−+

−











−













−+

−+












−=

DD

DDD

DDD

DD

DD

 

                                                                 

           (77)   

This is the complete solution describing the 

surface deflection of the KHI under the action of 

the small axial rotation. In the following sub-

section, the numerical picture will be illustrated. 

5.3 Numerical illustrations for the 

complete wave-solution 

In the present sub-section, we graphically the 

surface deflection ( )t,  as obtained in (77). 

Before we proceed to the numerical illustration 

for the function ( )t,  of the surface wave, it is 

useful to introduce the following dimensionless 

forms: 

The characteristic length )/(
2)2(

0 guL =  , the 

characteristic time )/(
)2(

0uLt =  , and other 

dimensionless quantities are given by  
1 1 (2) (2)2

0

1 1 (2) (2)2

0

, , ( ),

, , ( ).

H H

x T T

k k L t u

k k L t L u

    

  

 −  − 

 −  − 

= = =

=  =  =

where  )2(
0

)1(
0

)2()1( /,/ uuV ==   and the 

superposed asterisk refers to the dimensionless 

quantity, which will be omitted later for 

simplicity. 

The calculations are done for a system having  

,5.1,46.0,1,2.1,3.0,5.0,5.1 ======= ⊥HTx kk 

 1.0= and .5.0,1.0 00 ==     

The result in of the numerical calculations is 

displayed in the 3D graphs in Fig. (1)–Fig. (6). It 

is ascertained that the rise within the stratified V  

will increase the amplitude of the surface 

deflection ( )t,  that indicates the destabilizing 

action in the rise of V . The impact of the 

angular rate   on the surface waves has been 

displayed within the graph of Fig. (5). It is shown 

that the rise of  results in decreasing within the 

amplitude of the surface deflection. On the 

opposite hand, the rise within the vertical field 

causes increased within the amplitude of the 

surface wave. 

        
Figure 1: The elevation of the surface wave in the 

case of the 5.0=V                                   

 
Figure 2: Similar graph as given in Fig. (1) except 

that .1=V stratified velocity. 

Figure 3: Similar graph as given in Fig. (1) except 

that 3.1=V   
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Figure 4: Similar graph as given in Fig.( 1) except 

that 5.1=V  

 

      
Figure 5: The distribution of the angular frequency 

on the surface wave similar system as given in Fig. (1)  

                   

 
Figure 6: The distribution of the normal magnetic field 

on the surface wave for similar system as in Fig. (1). 

5.4 Derivation of the Duffing equation 

and the stability criteria 

To discuss the soundness behavior we tend to 

might attend the two solvability conditions (64) 

and (69) and brushing them so the amplitude 

equation is wanted in terms of the initial variable

 . This might be achieved by adding the 

multiplication of (64) with and (69) with then 

setting 1→ , the subsequent nonlinear equation 

is obtained: 

22
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(78) 

This is the cubic–quintic nonlinear Duffing 

equation having the imaginary damping term and 

without the national frequency. In order to 

perform the oscillatory solution, it is useful for 

introducing the absent of the auxiliary term [33]. 

Therefore, equation (72) may be rewritten as 
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       (79) 

where 2 is an unknown constant determined 

from the condition of the uniform solution. The 

use of the homotopy perturbation technique with 

a new homotopy parameter can be used to 

achieve the following condition of the uniform 

solution [36]:   
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(80) 

where A  representing a constant, the amplitude 

of the oscillatory solution of equation (79). Since 

the stability constraint requires that the 

parameter  must be the real quantity which 

needs that the discriminant of the above 

solvability condition equation is positive. That is  

2
2 211

21 12
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12 3 3
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 + − − 

 

 
+ −  
 

        (81) 

This condition can be satisfied for all values of 
2A  and the stability arises when  
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This condition will be investigated numerically in 

the following sub-section: 

5.5 Numerical Estimation for Stability 

Configuration  

In this section, the results of numerical 

calculation on the stabilization of surface waves 

propagating through an associate interface 

between two superposed rotation fluids are 

communicated. Firstly, it is helpful to research 

the numerical assess for the linear stability of the 

wave propagating on the interface. So as to gift 

this examination, numerical calculations for 

stability condition (45) are created for each 

vertical and tangential magnetic field influence. 

The results of the calculations are displayed in 

Figs (7) through (11). 

The stability condition obligatory from the linear 

stability analysis has been clarified numerically in 

Fig (7) - Fig (11). In these graphs, the system is 

taken into account to be statically unstable 

wherever the stratified density is chosen to be

.1 The plane is partitioned off into stable and 

unstable regions. The stable region is depicted by 

the image S whereas the unstable region has been 

labeled by the image U. The stable region has 

glad the relation (45). Within the calculation 

given below, all the physical parameters are 

wanted within the dimensionless kind as outlined 

higher than. The stability examination is formed 

by fixing the worth of all the physical parameters 

apart from one parameter having varied values 

for comparison. 

The action of the streaming having massive 

stratified velocity )1( V  and given in Fig. (7). 

This graph represents the stability diagram for a 

system 5,5.0,5.1 === Txk   and 2=⊥H . 

The diagram illustrates the variation of the 

stratified velocity, V = 1, 1.3, 1.6, and 1.9, on the 

stability profile. Inspection of the graph reveals 

that because the stratified fluid speed is inflated, 

the unstable region is inflated. This shows a 

destabilizing influence for the rise of the high 

speed. The destabilizing influence of the Kelvin-

Helmholtz waves have been incontestable earlier 

by Chandrasekhar [14]. The linear electro-

rheological Kelvin-Helmholtz instability was 

studied by El-Dib and Matoog [39]. They 

showed that the streaming contains a strictly 

destabilizing influence. 

The investigation of accelerating the stratified 

fluid velocity once V <1 is displayed in Fig (8) 

for the identical system of Fig (7). The diagram 

shows the variation of the stratified velocity, V = 

0, .2, .4, and.6, on the stability profile. As seen 

from the graph, the rise of the low 

stratified velocity V ends up in shifting the 

transition curve caused the increase within the 

stable region. This shows a helpful influence on 

the stable configuration. 

The influences of each normal and tangential 

magnetic field are displayed in Figs (9) and (10), 

severally, for the identical system of Fig (7) for a 

selected worth of V = 0.5. Four consecutive 

values for the vertical magnetic fields or the 

tangential field are considered thought of in these 

graphs. It is apparent from the examination of 

this graph that the increase of the vertical field of 

force can increase the unstable region causes a 

destabilizing role. 

 

 
Figure 7: The graph is to illustrate the stability 

relation (45).  The influence of the   variation of 

small-stratified fluid velocity 1V  on the linear 

stability diagram in the presence of a vertical 

magnetic field. The system have

5,5.0,5.1 === Txk  and 2=⊥H . 

Now, the action of the applied vertical magnetic 

field was switched off, and the contribution of 

the applied horizontal magnetic field has been 

displayed in Fig (10) for the same system of Fig 

(9). 
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Figure 8: Influence of the variation of the large- 

stratified fluid velocity (V>1) on the linear stability 

diagram for the same system of Fig. (7). 

 

 
Figure 9: Influence of the variation of the normal 

magnetic field on the linear stability diagram for the 

same system of Fig. (1) except that V= 0.5. 

           

 
Figure 10: As in Fig. (9) except that the variation of 

the normal magnetic field is replaced by the                                             

the tangential field and  ⊥H  and ||H . 

The variation of the horizontal magnetic fields is 

considered as 2,1,0|| =H  and 3. It seems that 

the increase in the values of the horizontal 

magnetic field plays a stabilizing role. The 

destabilizing influences of the vertical field and 

the stabilizing influence of the tangential field 

have been demonstrated earlier by Melcher [9] 

and by other several researchers for inviscid flow 

through the linear stability theory. Melcher [9] 

confirmed that in the linear stability theory, the 

tangential field has a stabilizing action (it 

increases the surface tension influence), while the 

normal field has a destabilizing impact (it 

decreases the surface tension influence). 

In Fig (11), the stability picture has been 

displayed in the plane )( kH −⊥  for variation in 

the angular velocity 2,5.1,1,5.0,0=  and 2.5. In 

the absence of the angular velocity  , the 

transition curve ⊥H  separates the plane into a 

stable region and an unstable region.  It appears 

that the existence of the angular velocity 

playing a stabilizing role in which the stable 

region has increased and the decreased region 

has decreased in size as the angular velocity 

parameter is increased. This shows a stabilizing 

influence on the existence of the angular velocity. 

   Figure 11: The graph is constructed for H⊥ 

versus k.   Influence of the angular velocity on the 

linear stability criteria for similar system of Fig. (9).          

 
Figure 12: Influence of the variation of the natural 

frequency   on the nonlinear stability diagram for 

the system having 

46.,5.1,2.1,5.1,1 =====  Vk Tx
and .5.0=⊥H      
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Figure 13: Influence of the variation of large-

stratified fluid velocity (V>1) on the nonlinear 

stability diagram for a similar system as given in              

Fig. (12) except that 1=  and .1=⊥H      

         

 
Figure 14: Influence of the variation of low-

stratified fluid velocity ( )1V  for a similar system 

as in Fig (13) except that  .5.0=xk    

 

  

Figure 15: Influence of the variation of the vertical    

the magnetic field  for the same system as in Fig 

(12) 1=  and .5.1=V       

                                                        

 
Figure 16: Influence of the variation of the 

tangential magnetic field for the same system as in 

Fig (15) except that .5.=xk  

In graphing the nonlinear stability image, we 

have a tendency to present the results of the 

stability analysis for surface wave propagation 

through the interface between two streaming 

rotation fluids. The stability condition (82) that 

obligatory from the nonlinear analysis has been 

illustrated within the stability diagram as shown 

in the graphs as displayed in Figs (12-16). A 

numerical search was conducted to hunt sequent 

values for every parameter displayed in these 

graphs for comparison. The stable region 

concerned in these graphs was set by satisfying 

the difference (82). 

The careful numerical outcome show that the 

computed worth for the variation of the natural 

fluid frequency    on the stable diagram of the 

plane )( 2 k− is used in Fig (12). The system 

thought-about during this graph is statically 

unstable. The stable region is because of the 

action of the rotation parameter. This stable 

region has increased because of the fluid, the 

natural frequency   is increased. This shows the 

helpful influence for the frequency . 

The examination of the influence of the variation 

of the stratified velocity is illustrated in Figs. (13) 

and (14). Examination of the stability graph 

reveals that the increase in the large stratified 

velocity ( )1V , as well as the increasing in the low 

stratified velocity ( )1V , leads to a decrease in the 

stable region. This shows the destabilizing 

influence of the stratified velocity in the 

nonlinear stability graph. The same rule is 

observed in the linear stability examination for 
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the variation of the large stratified velocity, while 

there is a contrast to the influence in the 

variation of low stratified velocity. 

When the transient curves are plotted as a 

function in the vertical magnetic field or as a 

function of the horizontal magnetic field the 

results are displayed in Fig (15) and Fig (16), 

respectively. The examination of the impact of 

the variation in the vertical magnetic field and the 

influence of the horizontal magnetic field on the 

nonlinear stable diagram has the same role as in 

the linear stability graph    as illustrated in Fig (9) 

and Fig (10), respectively. 

The examination of the influence of the 

alteration of the stratified velocity is illustrated in 

Figs. (13) and (14). Examination of the stability 

diagram reveals that the rise within the massive 

stratified rate ( )1V , yet because the increasing 

within the low stratified rate ( )1V , ends up in a 

decrease within the stable region. This shows the 

destabilizing influence for the stratified rate 

within the nonlinear stability diagram. The 

identical role is ascertained within the linear 

stability examination for the variation of the 

massive stratified rate, whereas there's a 

distinction for the influence within the variation 

of the low stratified rate. Once the transient 

curves, square measure premeditated as a 

performance within the vertical field of force or 

as a performance of the tangential field of force 

the results square measure displayed in Fig (15) 

and Fig (16), severally. The examination of the 

impact of the alteration within the normal field 

of force and also the action of the horizontal 

field of force on the nonlinear stable graph has 

an identical role as in the linear stability graph as 

illustrated in Fig (9) and Fig (10), severally. 

6 Conclusion  

We have investigated the impact of rotating on 

the flow and surface pattern formation in three-

dimension nonlinear Kelvin-Helmholtz 

instability. The system is stressed by a vertical or 

a horizontal direction of the field in the 

separation face of two rotating semi-infinite same 

and incompressible fluids. Capillary-gravity 

waves of the permanent kind at the interface 

between two magnetic fluids in a very rotating 

frame of reference have an interest. Allowance 

low rotation is performed. The solutions of the 

equations of motion under nonlinear boundary 

conditions cause etymologizing an equation that 

governs the surface displacement having high 

nonlinearity. He-multiple-scales technique is 

employed to expand the governing high 

nonlinear equation. The system is delineated by a 

generalized homotopy equation. This equation is 

accomplished by utilizing the cuboidal quintic 

nonlinearity. Taylor theory is employed to 

expand the nonlinear dispersion relation. 

Additionally, the perturbation analysis results in 

imposing two levels of the solvability conditions, 

that square measure accustomed construct the 

cubic-quintic nonlinear Duffing equation. The 

stability criterion square measure derived from 

finding the Duffing equation. Moreover, the 

approximate answer of the nonlinear dispersion 

relation is performed in terms of the surface 

displacement. Each the stability criteria and 

therefore the surface displacement answer square 

measure illustrated diagrammatically. Numerical 

calculations showed that the presence of low 

rotation to the Kelvin-Helmholtz drawback can 

suppress the instability due to the streaming of 

the flow. The vertical field is enjoying an unstable 

role, whereas the existence of the tangential field 

plays a stabilizing influence.  
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