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ABSTRACT

In this paper the solution of conformable Laplace equation, ∂
αu(x,y)
∂xα +∂αu(x,y)

∂yα =

0, where 1 < α ≤ 2 has been deduced by using fractional fourier series and

separation of variables method. For special cases α = 2 (Laplace’s equa-

tion), α = 1.9, and α = 1.8 conformable fractional fourier coefficients have

been calculated. To calculate coefficients, integrals are of type “conformable

fractional integral”.

Keywords: Conformable fourier series, conformable derivative, conformable Laplace equation.

1 Introduction

History of “conformable” fractional

derivative which is not really fractional

derivative, based on limit definition,

returns to five years ago (in 2014).

However, about starting point of frac-

tional derivative, it should be said that

L’Hopital asked the question “What does

derivative of order 1
2 mean? namely d

1
2 f

dx
1
2

”

in 1695. Many researchers have been

trying to generalize the concept of an or-

dinary derivative to fractional derivative.

Most of definitions use an integral form

such as Riemann - Liouville definition or

Caputo definition. However, Khalil et

al. introduces the limit form for frac-

tional derivative entitled “conformable

fractional derivative” [1–5].

Definition 1.1. [1] Given a function

f : [0,∞)→ R

Tα(f)(t) = lim
ε→0

f(t+ εt1−α)− f(t)

ε
.

for all t > 0, α ∈ (0, 1). If f is

α-differentiable in some (0, a), a > 0,

and limt→0+ f
(α)(t) exist, then define

f (α)(0) = lim
t→0+

f (α)(t).

Khali et al. gives also via fractional cords

a geometrical meaning to conformable

fractional derivative [6]. In [7] Tarasov
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proves that Conformable derivatives can

not be considered as fractional derivatives

of non-integer order. Thus, it is better

that instead of “Conformable fractional

derivative” we just call it “Conformable

derivative”.

For a more general case α ∈ (n, n+1], and

a natural number n we have the following

definition:

Definition 1.2. [1] Let α ∈ (n, n + 1],

and f be an n-differentiable at t, where

t > 0. Then the conformable fractional

derivative of f of order α is defined as

Tα(f)(t) =

lim
ε→0

f ([α]−1)(t+ εt([α]−α))− f ([α]−1)(t)

ε

where [α] is the smallest integer greater

than or equal to α.

The conformable fractional derivative Tα

satisfies all the properties in the following

theorem.

Theorem 1.1. [1, 5] Let α ∈ (0, 1] and

f, g be α-differentiable at a point t > 0.

Then,

1. Tα[af + bg] = aTα(f) +

bTα(g), for all a, b ∈ R.

2. Tα(tp) = ptp−α for all p ∈ R.

3. Tα(λ) = 0, for all constant functions,

f(t) = λ.

4. Tα(fg) = fTα(g) + gTα(f).

5. Tα(fg ) = gTα(f)−fTα(g)
g2

.

6. If, in addition, f is differentiable,

then Tα(f)(t) = t1−α dfdt (t).

Definition 1.3. [1] The α-fractional in-

tegral of a function f starting from a ≥ 0

is defined as

Iaα(f)(t) = Iaα(tα−1f) =

∫ t

a

f(x)

x1−αdx, (1)

where the integral is the usual Riemann

improper integral, and α ∈ (0, 1).

Following the definition of conformable

derivative and conformable integral,

conformable differential equations,

conformable integral equations and

differential-integral equations involving

them are also discussed. The conformable

heat fractional partial differential equa-

tion and conformable diffusion fractional

partial differential equation have been

solved in [8, 9]. Furthermore, in general-

ized format a generalization of classical

Sturm-Lioville equation to conformable

fractional Sturm-Lioville equation has

been introduced by Bilender et al. [10].

The methods for solving these equations

can be analytical, semi-analytical or nu-

merical methods [11–17]. The Fourier se-

ries is one of the most important methods

that are used in engineering and physical

sciences to give analytic solution involv-

ing initial and boundary values. The

method of fractional series is introduced

by Abu Hammed and Khalil [2]. By us-

ing of two methods, including combining

conformable fourier series and separation

of variables, in this paper we solve con-

formable Laplace fractional partial differ-

ential equation.
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2 Results and Discussion

In order to solve conformable fractional

Laplace’s equation by method of frac-

tional Fourier series we first need to

consider conformable Fourier coefficients

which can be calculated by using defi-

nition of conformable fractional integral.

Calculation of conformable Fourier series

coefficients are somewhat more complex

than ordinary Fourier series. This series

can be written as follows:

S(f)(x) =

a0

2
+
∞∑
n=1

[an cos(n
xα

α
) + bn sin(n

xα

α
)],

(2)

where a0, an, and bn are fractional Fourier

coefficients.

a0 =
1

p
Iaα(f)(t)|t=p=(α2π)

1
α

a=0 (3)

=
1

(α2π)
1
α

∫ (α2π)
1
α

0
f(t)

dt

t1−α
(4)

an = 2
pI

a
α(f cosn t

α

α )(t)|t=p=(α2π)
1
α

a=0 (5)

= 2

(α2π)
1
α

∫ (α2π)
1
α

0 f(t) cos(n t
α

α ) dt
t1−α ,(6)

n = 1, 2, 3, ...and

bn = 2
pI

a
α(f sinn t

α

α )(t)|t=p=(α2π)
1
α

a=0 (7)

= 2

(α2π)
1
α

∫ (α2π)
1
α

0 f(t) sin(n t
α

α ) dt
t1−α , (8)

n = 1, 2, 3, ...

The definition of periodic function also

differs from the ordinary case as follows:

Definition 2.1. [2] A function f(t) is

called α-periodical with period p if

f(t) = g(ϕ(t)) = g(ϕ(t) +
pα

α
),

for all t ∈ [0,∞).

Example 2.1. The function f(t) =

cos( t
α

α ) is α-periodic with period (α2π)
1
α .

For value of α = 2
3 , the function with pe-

riod (4π
3 )

3
2 has been plotted in Figure 1. .

Figure 1: The function f(x) = cos(x
2
3
2
3

) is 2
3 -periodic with period (4π

3 )
3
2 =8.573.
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Now we apply such series to solve the

following conformable fractional Laplace

equation after using separation of vari-

ables method:

∂αu(x, y)

∂xα
+
∂βu(x, y)

∂yβ
= 0, (9)

where 1 < α ≤ 2 and 1 < β ≤ 2 ; α = β

along with the following boundary condi-

tions:

u(0, y) = u1, u(L, y) = u2,

u(x, 0) = u3, u(x, L) = u4.
(10)

We use the separation of variables method

(SVM) so that u(x, y) = X(x)Y (y).

Putting it in the (9) gives

∂αX(x)

∂xα
Y (y) +X(x)

∂βY (y)

∂xβ
= 0 (11)

or
∂αX(x)
∂xα

X(x)
+

∂αY (y)
∂xα

Y (y)
= 0 (12)

Since x and y are independent variables,

then we should have

∂αX(x)
∂xα

X(x)
= c,

∂αY (y)
∂xα

Y (y)
= −c,

where c is constant and should be deter-

mined.

So we get the solution

u(x, y) = ec(
xα

α
− y

α

α
). (13)

We can obtain the solution in terms of a

double fourier series.

S(X)(x) =

a0

2
+

∞∑
n=1

[an cos(n
xα

α
) + bn sin(n

xα

α
)],

(14)

S(Y )(y) =

c0

2
+
∞∑
m=1

[cm cos(m
yα

α
) + dn sin(m

yα

α
)],

(15)

a0 =
1

(α2π)
1
α

∫ (α2π)
1
α

0
ec

xα

α
dx

x1−α (16)

an =
2

(α2π)
1
α

∫ (α2π)
1
α

0
ec

xα

α cos(n
xα

α
)
dx

x1−α ,

n = 1, 2, 3, ...

(17)

bn =
2

(α2π)
1
α

∫ (α2π)
1
α

0
ec

xα

α sin(n
xα

α
)
dx

x1−α ,

n = 1, 2, 3, ...

(18)

And similarly we have

c0 =
1

(α2π)
1
α

∫ (α2π)
1
α

0
e−c

yα

α
dy

y1−α (19)

cm =
2

(α2π)
1
α

∫ (α2π)
1
α

0
e−c

yα

α cos(n
yα

α
)
dy

y1−α ,

m = 1, 2, 3, ...

(20)

dn =
2

(α2π)
1
α

∫ (α2π)
1
α

0
e−c

yα

α sin(n
yα

α
)
dy

y1−α ,

m = 1, 2, 3, ...

(21)

We have calculated above coefficients for

the special cases standard Laplace’s equa-

tion(namely α = β = 2), and conformable

Laplace’equation (Laplace-like equation)

for values α = 1.9 and α = 1.8 in Ap-

pendix section.
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3 Conclusion

This paper solves conformable Laplace

equation,∂
αu(x,y)
∂xα + ∂αu(x,y)

∂yα = 0, by com-

bination of fractional fourier series and

separation of variables method. Frac-

tional Fourier coefficients are of type

conformable fractional integral that can

be calculated in MAPLE software. To

solve Conformable wave-like equation,
∂αu(x,t)
∂xα − 1

c2
∂αu(x,t)
∂tα = 0, conformable dif-

fusion equation, ∂αu(x,t)
∂xα − 1

k
∂βu(x,t)
∂tβ

= 0,

in which 1 < α ≤ 2 and 0 < β ≤ 1, one

can follow this approach.
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6 Appendix

1. Conformable fractional Fourier coefficients for α = 2

Figure 2: Fourier coefficients for solution of Laplace’s equation ∂2u(x,y)
∂x2

+ ∂2u(x,y)
∂y2

= 0.
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2. Conformable fractional Fourier coefficients for α = 1.9

Figure 3: Fourier coefficients for solution of Laplace-like equation ∂1.9u(x,y)
∂x1.9

+ ∂1.9u(x,y)
∂y1.9

=

0.

3. Conformable fractional Fourier coefficients for α = 1.8

Figure 4: Fourier coefficients for solution of Laplace-like equation ∂1.8u(x,y)
∂x1.8

+ ∂1.8u(x,y)
∂y1.8

=

0.
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