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ABSTRACT

1 Introduction al.
tional derivative entitled “conformable
History of

In this paper the solution of conformable Laplace equation, aagg(ﬁ’y) + aag?gi,y) =

0, where 1 < o < 2 has been deduced by using fractional fourier series and
separation of variables method. For special cases a« = 2 (Laplace’s equa-
tion), a = 1.9, and o = 1.8 conformable fractional fourier coefficients have
been calculated. To calculate coefficients, integrals are of type “conformable
fractional integral”.

Keywords: Conformable fourier series, conformable derivative, conformable Laplace equation.

“conformable”  fractional fractional derivative” [1-5].

introduces the limit form for frac-

derivative which is not really fractional
derivative, based on limit definition,
returns to five years ago (in 2014).
However, about starting point of frac-
tional derivative, it should be said that

L’Hopital asked the question “What does

1
. . 2
derivative of order % mean? namely Q”

in 1695. Many researchers have fen
trying to generalize the concept of an or-
dinary derivative to fractional derivative.
Most of definitions use an integral form
such as Riemann - Liouville definition or

Caputo definition. However, Khalil et

Definition 1.1.
f:[0,00) = R

[1] Given a function

Ta()(t) = tim LT LD =IO,
e—0 €
for all t > 0,0 € (0,1). If f s
a-differentiable in some (0,a),a > 0,
and lim, o+ () exist, then define
FO0) =1lim,_ . f)(t).

Khali et al. gives also via fractional cords
a geometrical meaning to conformable

fractional derivative [6]. In [7] Tarasov
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proves that Conformable derivatives can
not be considered as fractional derivatives
of non-integer order. Thus, it is better
that instead of “Conformable fractional
derivative” we just call it “Conformable
derivative”.

For a more general case a € (n,n+1], and
a natural number n we have the following

definition:

Definition 1.2. [1] Let a € (n,n + 1],
and f be an n-differentiable at t, where
t > 0. Then the conformable fractional

derivative of f of order « is defined as

To(N)(t) =
([e]-1) ([a]—a)y _
lim ! : (t+et )

e—0 €

f([oc]—l)(t)

where [a] is the smallest integer greater
than or equal to .

The conformable fractional derivative T,
satisfies all the properties in the following
theorem.

Theorem 1.1. [1,5] Let a € (0,1] and
f,9 be a-differentiable at a point t > 0.
Then,

1. Tylaf + byg] =
bTo(g), for all a,b e R.

aTo(f) +

2. To(tP) = ptP=* for all p € R.

3. To(N) =0, for all constant functions,

F(t) = A

4 Ta(fg) = fTa(g) +gTo¢(f)'

5. Tu(f) = LU/ Tolo),

6. If, in addition, f is differentiable,
then To(f)(t) = t1*%(¢).

Definition 1.3. [1] The a-fractional in-
tegral of a function f starting from a >0
is defined as

" f(=)

1:1704

I(Ht) =I5t~ f) = da, (1)

a

where the integral is the usual Riemann
improper integral, and o € (0,1).

Following the definition of conformable

derivative and conformable integral,
conformable differential equations,
conformable integral equations and

differential-integral equations involving
them are also discussed. The conformable
heat fractional partial differential equa-
tion and conformable diffusion fractional
partial differential equation have been
solved in [8,9]. Furthermore, in general-
ized format a generalization of classical
Sturm-Lioville equation to conformable
fractional Sturm-Lioville equation has
been introduced by Bilender et al. [10].
The methods for solving these equations
can be analytical, semi-analytical or nu-
merical methods [11-17]. The Fourier se-
ries is one of the most important methods
that are used in engineering and physical
sciences to give analytic solution involv-
ing initial and boundary values. The
method of fractional series is introduced
by Abu Hammed and Khalil [2]. By us-
ing of two methods, including combining
conformable fourier series and separation
of variables, in this paper we solve con-
formable Laplace fractional partial differ-
ential equation.
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2 Results and Discussion

In order to solve conformable fractional
Laplace’s equation by method of frac-
tional Fourier series we first need to
consider conformable Fourier coefficients
which can be calculated by using defi-
nition of conformable fractional integral.
Calculation of conformable Fourier series
coefficients are somewhat more complex
than ordinary Fourier series. This series
can be written as follows:

S(H)(x) =
?0 + nzzzl an, cos( n— )+ bn sm(nz )],
(2)

where ag, a,,, and b, are fractional Fourier
coefficients.

1
«

218(f cosn ) ()] e 2" (5)

a=0
L 0 (1) cos(nt) il (6)
1-Jo a/tl-as

N (a2m)«
n=1,23,..and

an,

1
by = 212(f sinnf2) ()25 20" (7)

_ a27r)a : toy _dt
= L [ ) st )t (9
n=1,2,3,..

The definition of periodic function also
differs from the ordinary case as follows:

Definition 2.1. [2] A function f(t) is
called a-periodical with period p if

for allt € [0, 00).

Example 2.1.

cos(%

The function f(t) =
) is a-periodic with period (a2m)«
For value of a = %, the function with pe-

riod (%”)% has been plotted in Figure 1. .

f(x) = cos (g xé)

Figure 1: The function f(z) = cos(

8
w\w‘ o

) is 2-periodic with period (7”)%:8.573.
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Now we apply such series to solve the
following conformable fractional Laplace
equation after using separation of vari-
ables method:

O uley) | Puls.y)
ox® oyP

where l <a<2and 1< <2;a=0
along with the following boundary condi-

=0, (9)

tions:

U(O,y) = ur, U(Lay) = u2, (10)

u(z,0) = us, u(x,L) = uy.

We use the separation of variables method
(SVM) so that u(z,y) = X(x)Y(y).
Putting it in the (9) gives

0°X(x) 85Y(y) B
o 8"‘8X(E:L‘) 8‘:9Y(gy)
X@ Ty 0 W

Since = and y are independent variables,

then we should have

0°X () 9vY (y)
x> _ oz

X(x) O Y(y)

= —C’

where ¢ is constant and should be deter-
mined.
So we get the solution

@

u(z,y) =) (13)

We can obtain the solution in terms of a
double fourier series.

S(X)(x) =
?0 + Z[an cos(n%) + by sin(n%)],
n=1
(14)

SY)(y) =
«
—|— Z em cos(m=—) + d,, sin(m=—)],
(15)
1
1 (a2m) @ oz® dz
ap = (a27r)a/0 e o —— (16)
1
2 (a2m)a o % dx
n:( ot Jo e“a cos(n—)——,
a2m)a
n=12,3
(17)
1
2 (a2m) oz x®  dr
by, = T e“a sin(n—)——,
(a2m)a Jo -
n=1,2,3,..
(18)
And similarly we have
1
1 (a2m) @ v d
e
(a2m)a Jo Yy
B 9 (a27) @ i ya dy
Cm = @t b e “a cos(n"—)——,
=1,2,3
(20)
) (a27r)é a Y. dy
d —< o) /0 e “a Sln(n—)ﬁ,
a2m)a
m=1,23,..
(21)

We have calculated above coefficients for
the special cases standard Laplace’s equa-
tion(namely o = [ = 2), and conformable
Laplace’equation (Laplace-like equation)
for values @ = 1.9 and o = 1.8 in Ap-

pendix section.
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3 Conclusion (3]

This paper solves conformable Laplace
O%u(z,y) | O%u(z,y)
+ Ty

equation,— 3 =0, by com- (4]
bination of fractional fourier series and
separation of variables method. Frac-
tional Fourier coefficients are of type
conformable fractional integral that can
be calculated in MAPLE software. To

solve Conformable wave-like equation,

0%u(x,t) 1 0%u(xt) _ . [6]
Jaa 2 =0, confo;mable dif-
. . 0%u(x,t) 1 0Pu(z,t)

fusion equation, =557 — =557~ = 0,

in which 1 < a<2and 0 < 8 <1, one
can follow this approach.
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1. Conformable fractional Fourier coefficients for o = 2

[ L
i
1 o3
> i xe © dx
(4r) > Yo
[ _ 2ne\ T
au_1_i_ 1+el_),4 (1)
4 cy m
1
(4m) 2 ;
N x
1 T
> 1[ xcos[ ?]e - dx
(4n) 2 %o
a, - 1 (—c+ 2¢ CCCOS(]‘Iﬂ)l — @ et 2 " asin(ma) cos(nﬂ]) J4 @
4 (f+74)Jx
L
(4m) 2 )
4 X
1 . 3
> L[ xsm[ﬂT]e < dx
(4r) > Yo
b= L (ﬂ+ E n—2é I‘Cﬂcos(?tﬂ)J +26 " csin(m n) C{JS(]‘IH)] Ja @
I "o (@+2) =
. . . . . 02u(x, 0?u(x,
Figure 2: Fourier coefficients for solution of Laplace’s equation 3562 v) 4 6?52 v — .
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2. Conformable fractional Fourier coefficients for o = 1.9
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(387 L 1
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> . Po0s| n2— |e ¥ dx
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18
(3.8m) 0
1032631579
3305 2000000000
e L — [0.4952799403 [—1. oot (eH1530909 <) ccos(6.283185310 )
4+
1052631579 Yy
3805 2000000000
+ (8050 ) ﬂsin(6.253185310n)”
L
19
(387) L o
oA
] )
(3.87) 0
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P T [0.4952799403 [—1.n+ (193505209 €) 1005(6.283185310 1)
E+a)n

1052631579 Yy
3805200 ¢}, 2000000000
— 1 (!193803208 ¢ csin(6 2831853103),‘,'

Figure 3: Fourier coefficients for solution of Laplace-like equation

0.

3. Conformable fractional Fourier coeflicients for o« = 1.8
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Figure 4: Fourier coefficients for solution of Laplace-like equation
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