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ABSTRACT  

Electromyography (EMG) is about studying electrical signals from muscles and can provide a wealth 

of information on the function, contraction, and activity of your muscles. In the field of EMG pattern 

recognition, these signals are used to identify and categorize patterns linked to muscle activity. Various 

machine learning (ML) methods are used for this purpose. Successful detection of these patterns 

depends on using effective signal-processing techniques. It is crucial to reduce noise in EMG for 

accurate and meaningful information about muscle activity, improving signal quality for precise 

assessments. ML tools such as SVMs, neural networks, KNNs, and decision trees play a crucial role in 

sorting out complex EMG signals for different pattern recognition tasks. Clustering algorithms also 

help analyze and interpret muscle activity. EMG and ML find diverse uses in rehabilitation, prosthetics, 

and human-computer interfaces, though real-time applications come with challenges. They bring 

significant changes to prosthetic control, human-computer interfaces, and rehabilitation, playing a vital 

role in pattern recognition. They make prosthetic control more intuitive by understanding user intent 

from muscle signals, enhance human-computer interaction with responsive interfaces, and support 

personalized rehabilitation for those with motor impairments. The combination of EMG and ML 

opens doors for further research into understanding muscle behavior, improving feature extraction, 

and advancing classification algorithms. 
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1 Introduction 

Electromyography (EMG) is a way of recording and analyzing electrical signals made by muscles. It is the 

study of electrical currents produced in a muscle during contraction. Electromyography provides 

information on neuromuscular function as well as muscle morphology [1]. These signals, known as 

electromyograms, can tell us a lot about how your muscles are working, how they're contracting, and how 

they're performing. It's used in medicine, sports, and rehab to measure muscle health and performance.  

The nervous system is always in control of how your muscles contract and relax. Therefore, the EMG is a 

complex signal and depends on the anatomy and physiology of your muscles. These signals are used as a 

valuable tool for the identification and diagnosis of different neuromuscular disorders. Neurological 

disorders can be diagnosed through the categorization of EMG signals into distinct categories. There are 

different classification techniques that are employed to classify EMG signals for the diagnosis of 

neurodegenerative disorders [2]. The EMG signals generated using electrodes are noisy. Research has been 

conducted in this field, improving algorithms, improving existing methodologies, enhancing detection 

techniques to minimize noise, and obtaining precise EMG signals. 

There are different significances of collecting the EMG signals. Some of them are muscle health assessment, 

rehabilitation, prosthetic control, and study in sports science. Pattern recognition in EMG is one emerging 

field where the EMG signals are used in the analysis to identify and categorize specific patterns related to 

muscle activity. Different ML techniques are employed to develop EMG pattern recognition systems. The 

data obtained from EMG can be quite complex and multivariate, making it suitable for ML approaches that 
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can handle this type of data. ML models can recognize EMG signals that are associated with certain 

conditions, helping in early detection and treatment [3, 4]. ML models can be trained to recognize muscle 

activity patterns associated with various movements, making it easier for users to control prosthetic limbs 

more naturally and intuitively [5, 6]. The use of artificial intelligence can process EMG data and provide 

feedback and rehabilitation programs that are tailored to the user’s needs [7]. Users perform specific hand 

movements or muscle movements, and ML models can classify those gestures to control a computer 

interface, robotic device, or other technology.  

The focus of this review article is on the use of ML techniques for pattern recognition applications using 

EMG signals. The article will delve into the integration of EMG, a technique for capturing muscle electrical 

activity, with ML, a technology for recognizing patterns in data. It will explain how ML techniques are 

employed to analyze and interpret EMG signals. The goal of this review article is to provide a 

comprehensive overview of the state of the art in EMG and ML for pattern recognition, highlighting the 

importance of this intersection and its potential to bring about positive changes in healthcare, technology, 

and human-machine interaction. By offering insights into the current state of the field and its future 

directions, the review article aims to inform and inspire further research and innovation in this exciting 

domain. 

2 EMG Fundamentals 

2.1 Basics of EMG 

An EMG is a signal that can be read by electrodes from an active muscle. measures muscle electrical activity 

by detecting and recording the electrical signals generated by muscle fibers during muscle contractions and 

relaxations. EMG is a way to check how your muscles and the nerves that control them are doing. It can 

tell you if you have nerve or muscle dysfunction or if there's a problem sending signals from your nerves 

to your muscles. Motor neurons send electrical signals that cause your muscles to contract and these signals 

are converted into charts, sounds, or numbers that a doctor can interpret using electrodes. Muscles are 

triggered by a series of nerve signals sent from motor neurons in our spinal cord. These neurons take in 

signals from the whole nervous system and send them to the muscles, which activate them and cause them 

to contract. The action potential of each motor unit creates an electrical field in the surrounding 

environment [8]. This electrical field can be detected by placing electrodes close to the muscle fibers and at 

the surface of the skin.  

EMG involves placing electrodes on the skin or within the skin close to the muscle of interest. The electrode 

placement will depend on the muscle being measured and the level of measurement needed. There are 

different technologies available for the generation and collection of the EMG signals using invasive as well 

as non-invasive methods [9]. The electric impulses are generated when a muscle contracts, and these 

impulses are known as action potentials. Action potentials originate when the muscle cells depolarize. The 

electrodes placed on the skin or within the muscle are designed to sense these electrical signals.  

2.2 EMG Types 

There are two primary types of EMG: surface EMG (sEMG) and intramuscular EMG (iEMG). In sEMG, 

electrodes are positioned on the skin's surface above the target muscle. These electrodes pick up and capture 

the electrical activity of the muscle fibers directly below the skin's surface. Because it doesn't involve needles 

or intrusive procedures, surface EMG is considered non-invasive. Adhesive gels or tapes are used to affix 

electrodes to the skin. Numerous fields, including sports science, ergonomics, human-computer interface, 

muscle rehabilitation, and assessment of muscle function, frequently employ sEMG. It is appropriate for 

activities such as muscle fatigue assessment and for the acquisition of signals from superficial muscles. As 

the name implies, iEMG records electrical activity by directly introducing tiny needle electrodes into muscle 

tissue. Since needles must be inserted into the muscle to perform iEMG, it is a more invasive procedure 

than surface EMG. Usually, a healthcare expert does this procedure. Because iEMG is near muscle fibers, 
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it offers more accurate and focused measures of muscle activity. It is used to examine deep muscles or 

certain muscle groups that are difficult to access using surface electrodes. In this review article, we will 

mainly focus on the sEMG and its applications in pattern recognition. 

2.3 EMG Signal Preprocessing 

The Electromyography (EMG) signal measures electrical currents in muscles during contraction, reflecting 

nervous system control. As the signal travels through tissues, it picks up noise. Additionally, when detected 

on the skin's surface, the EMG detector collects signals from multiple motor units simultaneously, causing 

signal interactions. The complexity of the EMG signal is influenced by both the nervous system and the 

anatomical/physiological properties of muscles. It is very important for the EMG signals to be 

preprocessed removing all the noises before further analyzing the signal. Proper preprocessing is essential 

to enhance the quality of the EMG signals, improve the accuracy of subsequent analyses, and ensure 

meaningful interpretation. The signals from muscles (EMG) can get mixed with different types of unwanted 

signals like movement artifacts or electrical interference, making it hard to understand the muscle activity. 

Techniques like filtering and removing unwanted signals help make muscle activity clearer. This is important 

for tasks like recognizing patterns, assessing muscle fatigue, and studying movement. When preparing the 

data for ML, good preprocessing is essential to help the models accurately understand and categorize 

gestures or muscle activities. 

Preprocessing of EMG signals using techniques like filtering and removing unwanted parts helps make sure 

we get the right information about muscle activity. Features like how strong, fast, or how long a muscle 

works are important, but noise in the signals can mess them up. Efficient preprocessing makes it easier to 

get the right details, which is important for tasks like pattern recognition, checking muscle fatigue, and 

studying movement. There are different techniques developed for pre-processing and analyzing the EMG 

data such as wavelet analysis, higher order statistics, empirical mode decomposition, artificial neural 

network, and independent component analysis [10]. Over the last few years, the pre-processing step for 

sEMG based on a wavelet de-noising technique has been extremely successful [11]. It is possible to 

efficiently eliminate white Gaussian noise using wavelet de-noising methods. Artificial intelligence neural 

network has been used to for noise removals from the EMG signals [12]. Noise reduction in EMG is 

essential for obtaining accurate, reliable, and meaningful information about muscle electrical activity. It 

improves the quality of the recorded signals, enabling more precise assessments. 

3 ML Techniques for EMG Pattern Recognition 

3.1 ML Algorithms 

ML algorithms play an essential role in the processing of EMG data for pattern recognition. ML algorithms 

work by analyzing the complex EMG signals and classifying them into different types of patterns or actions. 

Some of the ML classification algorithms used in the pattern recognition are mentioned below with an 

example: 

3.1.1 Support Vector Machine (SVM) 

SVM, a supervised learning algorithm used for classification, identifies the hyperplane that is most suitable 

for classifying different classes in a feature space. SVM can be used to classify EMG signals according to 

different movement classes. This makes SVM useful for tasks such as gesture recognition. SVM has shown 

an improved accuracy for predicting different knee angles [13] as well as in recognizing the finger 

movements [14].  

3.1.2 Artificial Neural Networks (ANN) 

ANN is a ML model that draws inspiration from the composition and operations of the human brain. 

Networked nodes arranged in layers make up this structure. Neural networks are utilized in prosthesis 
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control, rehabilitation, and movement prediction to recognize EMG patterns. For example, sEMG has 

been used to develop a ANN ML model for recognizing the hand gesture [15]. 

3.1.3 K-Nearest Neighbors (KNN) 

KNN is an easy-to-understand algorithm that groups data points according to the majority class of their 

closest neighbors. KNN is used to classify EMG signals according to how closely they resemble previously 

identified patterns, which makes it suitable for real-time applications. A KNN model has been implemented 

for the recognition of human arm movement [16]. 

3.1.4 Random Forest (RF) 

An ensemble learning technique called RF combines the predictions of several decision trees to increase 

generalization and accuracy. Robust EMG signal categorization can be achieved by RF, which offers good 

accuracy and noise resistance. Using sEMG, RF model has been built for the prediction of knee joint 

movement [17] and hand movement recognition [18]. 

3.1.5 Hidden Markov Models (HMM) 

A system with unobservable states is represented by the HMM statistical model. It works especially well for 

time-series data modeling. HMMs are useful for situations where the sequence of muscle activations is 

crucial since they are used to identify temporal patterns in EMG signals. HMM model has been 

implemented for the classification of the gait phase [19]. It also has been used in recognition of common 

hand finger movements using sEMG [20]. 

3.1.6 Convolutional Neural Networks (CNN) 

CNNs are a specific kind of neural network used to interpret organized grid data, like pictures. It 

automatically learns hierarchical characteristics using convolutional layers. To extract features for 

classification more effectively, CNNs are used to evaluate time-frequency representations of EMG signals. 

CNN model has shown the improvement in the hand movement recognition [21] and also has shown 

higher accuracy and better robustness for limb movement pattern recognition [22]. 

3.1.7 Long Short-Term Memory Networks (LSTM) 

LSTMs are a type of recurrent neural network that can work with long-term dependencies in sequential 

data. LSTMs are suitable for tasks such as temporal pattern analysis of EMG signals and gesture recognition, 

as well as continuous movement prediction. LSTM has been shown as a reliable ML algorithm for hand 

movement pattern recognition [23]. It has been also implemented for sEMG feature learning and 

classification [24].  

3.1.8 Extreme Learning Machines (ELM) 

ELM is a feedforward neural network with a single hidden layer that chooses its hidden layer weights at 

random. It provides strong generalization and quick learning. Applications such as prosthesis control can 

benefit from ELM's efficient and real-time EMG signal categorization. ELM has been used to develop a 

model for the estimation of handgrip force [25]. It has also been used to enhance the gesture recognition 

using sEMG [26]. 

3.1.9 Linear Discriminant Analysis (LDA) 

The goal of LDA is to identify the linear feature combination in the feature space that best divides various 

classes. LDA has been trained with sEMG signals for pattern recognition [27]. It has also been used to 

build a hand movement recognition system [28]. 
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3.2 Clustering Algorithms 

Not only classification algorithms, but clustering algorithms also play a significant role in analyzing and 

interpreting muscle activity. Some common clustering algorithms used for pattern recognition in EMG are: 

3.2.1 K-Means 

K-Means divides data into k groups based on similarity, with the goal of minimizing the sum of squares 

within a group. K-means breaks down EMG signals into groups based on how similar they are, making it 

easier to analyze patterns and break them down into different groups. Clustering of similar muscle activities, 

feature space analysis are some applications of k-means clustering in EMG signals. K-means clustering have 

been applied to build classification algorithms for hand movements detection [29]. K-means clustering 

approach has also been applied for fatigue and non-fatigue EMG segments classification [30]. 

3.2.2 Hierarchical clustering 

Hierarchical cluster formation is the process of gradually combining or dividing existing clusters to form a 

hierarchical representation. This hierarchical structure creates a tree-like representation of muscle activity 

patterns, allowing for insights into the connections between different muscle activities. A hierarchical 

clustering technique has been applied to successfully group strides with similar EMG patterns of onset and 

offset activation [31]. Accuracy of the classification model has increased by decreasing the sEMG signal’s 

complexity using hierarchical clustering [32]. 

3.2.3 Self-organizing Maps (SOM) 

SOMs are a kind of artificial neural network that maintains the topological characteristics of the input data 

by mapping it onto a lower-dimensional grid. EMG patterns are mapped into a lower-dimensional grid via 

SOMs while maintaining the topological connections between patterns. SOM method has been used for 

feature selection and then classification of hand movements using sEMG [33]. A study has also shown that 

the patients can be categorized based on the activation of their jaw muscles using SOM [34]. 

3.2.4 Density-Based Spatial Clustering of Applications with Noise (DBSCAN) 

DBSCAN classifies outliers as noise and clusters together data points that are near to one another. Dense 

areas of EMG patterns are identified by DBSCAN, which classifies outliers as noise. Anomaly detection, 

identification of unusual muscle activation pattern are some applications of DBSCAN. This method has 

been used to eliminate the data that deviates from the center cluster and finally apply the ML techniques 

for movements detection [35]. DBSCAN clustering has been compared with other clustering method 

observing different patterns in a movement detection study [36]. 

3.2.5 Fuzzy C-Means (FCM) 

Data points are given membership values by FCM, which enables them to be a part of several clusters with 

varying levels of membership. EMG patterns can belong to several clusters with different degrees of 

membership since FCM assigns membership values to them. FCM clustering method has been applied on 

EMG signals and ML classification algorithms has been applied for hand gesture recognition [37]. The 

integration of FCM in building a ML based classifier system has shown an improvement in the EMG 

classification system [38]. 

3.2.6 Affinity Propagation (AP) 

The most typical data points in each cluster are called exemplars, and AP finds them via a message-passing 

approach. Exemplars within EMG patterns are found using AP, and they stand for the most typical patterns 

within each cluster. AP is used with dynamic time wrapping achieving a good accuracy for gesture 

recognition [39]. 
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3.3 Feature Extraction for EMG 

The process of feature extraction is an essential part of the EMG signal analysis process. It involves the 

transformation of the raw signal information into a collection of pertinent and informative characteristics 

that can be utilized for further analysis, categorization, or interpretation. Some of the common methods 

for feature extraction are: 

3.3.1 Time-domain features 

The amplitude values of the EMG signal in the time domain are directly used to compute time-domain 

characteristics. Some examples of time-domain features are mean absolute value, root mean square, and 

zero crossing rate. Time-domain feature extraction methods have been performed to improve the 

performance of the arm movement pattern recognition [40]. A study has been carried out to determine the 

most stable time-domain features for providing the robust pattern recognition model [41].  

3.3.2 Frequency-domain features 

The study of the EMG signal's frequency content yields frequency-domain characteristics. Some examples 

in the frequency domain are spectral moments that consist of mean or median frequency, power spectral 

density that measures the power distribution across different frequency bands. Features vector with 

frequency domain features have been used for implementing ML classifiers [42]. Features in the frequency 

domain have demonstrated the ultimate dominance and signal characterization, as determined by statistical 

parameters of the EMG power spectral density [43]. 

3.3.3 Time-Frequency features 

TF characteristics give a more thorough depiction of the signal by capturing both frequency and temporal 

information. Short Time Fourier Transform (STFT) that represents the energy of a signal in both time and 

frequency domain, Wavelet transform that decomposes the signal into different frequency components and 

Wigner-Ville Distribution that represents the time-frequency content based on the joint time-frequency 

distribution are some examples for time-frequency analysis. A study has been conducted where the suitable 

features in time-frequency domain are determined for distinguishing fatigue and non-fatigue conditions 

[44]. Wavelet transform has been used to study the EMG signals in different frequency domains and also 

time-frequency coherence analysis has been performed between the muscle pairs for different stability 

conditions [45, 46]. 

3.3.4 Non-linear features 

Non-linear features capture aspects of the signal's complexity and dynamics. It helps in measuring the signal 

irregularities and quantifying the recurrence of patterns in the signal. Based on sEMG signals, non-linear 

feature extraction has been performed based on the recurrence plot and has been used for building a 

classifier to estimate hand movements [47]. Non-linear parameters for surface EMG has been used for the 

diagnosis of Parkinson’s disease [48]. 

3.3.5 Statistical features 

The variability and dispersion of an EMG signal are described by statistical properties. It provides the 

measure of central tendency, asymmetry and shape of the signal distribution, measures skewness and 

kurtosis which are the moments above second order. Statistical analysis also helps to understand the 

relationship between the variables and features. Statistical analysis have helped to understand the linear 

relationship between different features and hand movements [49]. Statistical and frequency features were 

taken from the raw EMG data and used for the classification of finger movements in order to reduce the 

complexity of the signals and make them easier for the algorithm to interpret [50]. 
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3.3.6 Amplitude-based features 

Amplitude-based features are the features derived from the amplitude characteristics of the EMG signal. 

These features can be extracted using techniques like the Hilbert transform. Amplitude-based features have 

been used to develop a classifier for a speech recognition system [51].  

3.3.7 Time-Interval features 

The time-interval features are related to the timing characteristics of muscle contractions and relaxations. 

Duration of muscle activity, inter-contraction interval and the time taken for the signal to increase or 

decrease from one threshold to another are some examples of time-interval features. The time-interval 

features have shown to have a better classification accuracy to distinguish sEMG under fatigue and non-

fatigue conditions [52]. 

3.3.8 Spatial features 

Spatial features are the features that consider the spatial distribution of EMG signals when using multiple 

electrodes. Coherence and cross-correlation are examples of spatial features. Spatial feature extraction has 

been used and these features have shown a good result in the identification of a motor task [53]. A classifier 

has been implemented using the spatial features of high density EMG and have shown a good classification 

rate [54]. 

4 Applications of EMG and ML Pattern Recognition 

Applications for pattern recognition using EMG and ML have been found in several sectors. The 

combination of EMG and ML has the potential to transform several industries by offering individualized 

healthcare treatments, more intuitive and adaptable interfaces, and creative methods for interacting with 

technology. The variety of applications and the precision and effectiveness of EMG-based pattern 

recognition systems are both being enhanced by ongoing research in this field. Some of the applications are 

briefly described below. 

4.1 Prosthetic Control 

Devices for prosthetic limbs are controlled by EMG signals from residual muscles. Different muscle 

patterns are classified by ML algorithms, giving users the ability to manipulate a prosthetic limb with natural 

movements. When integrated with ML, EMG can provide significant benefits for prosthetic control, 

improving the usefulness and performance of prosthetic devices for amputees. Prosthetic devices can be 

operated more naturally, enabling users to execute different movements by instinctively contracting specific 

muscles. Deep learning methods have been applied to control the prosthetic hands using raw EMG signals 

[55] and also classify the hand gesture movements [56]. By training ML algorithms to identify complex 

patterns in EMG signals, prosthetic movements can be made more precise and accurate. This improves the 

prosthetic limb's overall dexterity by enabling users to execute precise and well-coordinated movements. It 

has been shown that the use of appropriate features with a suitable ML classifier increases the classification 

accuracy [57, 58]. The integration of EMG and ML is one promising approach to increasing the usability, 

functionality, and functionality of prosthetic devices and, eventually, the quality of life for people who have 

lost limbs. 

4.2 Rehabilitation and Physical Therapy 

EMG-based technologies are used in the rehabilitation process to evaluate and improve muscle function. 

There are many advantages to using EMG with ML in physical therapy and rehabilitation. ML is used to 

evaluate EMG signals to customize rehabilitation treatments, monitor progress, and give immediate 

feedback. It has been shown that the healthcare professional will be able to improve the effectiveness of 

lower back pain rehabilitation by using an ML classifier to identify patients who are responding to functional 

restoration rehabilitation [59]. Real-time biofeedback is made possible using artificial intelligence, which 
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encourages patient awareness and participation in activities. Adaptive rehabilitation situations and fatigue 

can be better understood with the application of ML-based models [60]. Appropriate EMG feature selection 

can improve the classification accuracy and lead to the performance increment in therapies [61, 62]. The 

application of EMG and ML to physical therapy and rehabilitation improves treatment programs' efficacy, 

precision, and personalization, which in turn leads to better patient outcomes and experiences during the 

healing process. 

4.3 Human-Computer Interaction (HCI) 

Electronic equipment and computers can be controlled without using hands by using EMG signals. ML 

algorithms allow users to interact with things without making physical contact by identifying muscle 

patterns or motions. EMG enables natural and intuitive device control via muscle signals while ML 

improves the precision and responsiveness of interactions. EMG enables personalized and adaptive 

interfaces by recognizing specific muscle patterns for personalized user experiences. In real-time processing, 

EMG improves speed and efficiency in HCI, enabling fast and accurate control. A study has been 

conducted where ML algorithms are implemented for a recognition system and has resulted in the reduction 

of redundant information improving the efficiency and accuracy of the system, and has been thought to 

strengthen the HCI’s capacity for generalization over time [63, 64]. In addition, EMG integration in HCI 

supports applications such as gesture recognition, prosthetic control and more, broadening the scope of 

accessible and easy-to-use interactions. sEMG signals have been used in a hand gesture recognition system 

and have shown a high accuracy [65]. The use of EMG in human computer interaction has different medical 

applications. sEMG has been integrated with ML to study and improve the myoelectric control by pattern 

recognition [66]. EMG and ML together improve HCI's effectiveness, adaptability, and customization, 

resulting in more seamless and user-friendly interactions. 

4.4 Assistive Technology 

ML and EMG are used to help people with disabilities perform everyday tasks. To carry out operations like 

operating wheelchairs, communication devices, or smart home automation, ML algorithms analyze EMG 

signals. The capacity to interpret EMG data in real-time facilitates prompt and agile control, which enhances 

the usability and functionality of assistive devices. A study has shown that the integration of EMG and ML 

is very important for assistive technological applications [67]. The use of EMG signal with a combination 

of a ML algorithm helps to achieve the best classification accuracy and can enhance the performance of the 

assistive devices [68]. The use of assistive technology is expanding to increase the independence of 

individuals with disabilities and facilitate their interactions with their surroundings. sEMG and ML based 

assistive device have shown better performance than the conventional interfaces [69]. The combination of 

EMG and ML significantly enhances the usability, functionality, and adaptability of assistive technology, 

ultimately enabling users with physical limitations to live more independently and with a higher quality of 

life. 

4.5 Sports Science and Biomechanics 

Muscle activation during sports and physical exercise is analyzed using EMG. EMG data is processed by 

ML algorithms to identify trends pertaining to muscle function, coordination, and exhaustion. It offers 

useful insights for maximizing athletic performance and avoiding injuries. EMG records precise 

information on muscle activity, which is then processed by ML to examine movement patterns, 

coordination, and biomechanics. The integration makes it possible to identify the best performance tactics 

and create individualized training plans for each athlete [70, 71]. It can also be used in the study of muscle 

fatigue dynamics [44] and can potentially prevent back pain [72]. Pattern recognition analysis can help find 

muscular imbalances or aberrant patterns to help sports scientists create focused injury prevention 

techniques.  
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4.6 Gait Analysis 

EMG signals are used to investigate and evaluate the walking patterns of humans. ML algorithms help 

identify and categorize aberrations or anomalies in gait based on EMG inputs. Muscle activity is recorded 

by EMG, and ML analyses this data to identify patterns and abnormalities. This combination makes it 

possible to precisely analyze gait mechanics, which helps to identify ideal movement patterns and possible 

problems. The use of ML algorithms to identify minute variations in muscle activation can help identify 

anomalies in gait early on [73] and enable individualized treatment plans. Furthermore, the technology 

allows for objective and quantitative evaluations, which improves the precision of gait analysis. sEMG has 

been integrated with ML to predict the gait events [74] and phases [75]. It has been shown that EMG study 

integrated with deep learning methods can develop muscle synergy based gait analysis technique [76]. The 

integration of ML and EMG improves gait analysis by offering individualized gait mechanics improvement 

plans, early abnormality detection, and thorough insights. 

4.7 Gesture Recognition 

ML algorithms categorize EMG signals that are associated with gestures. EMG records the muscle impulses 

connected to motions, and ML uses this information to recognize and understand gestures with accuracy. 

With the use of this technology, gesture control is made simple and natural, allowing for accurate real-time 

identification of a wide range of actions. The use of deep learning in EMG based hand gesture recognition 

has shown improvement in the classification accuracy [77, 78]. Use of the spectral feature domains for 

building ML hand gesture recognition system might assist physically challenged persons with non-invasive 

machine communication and disabled people with nonverbal communication [79]. Because ML algorithms 

may adjust to individual differences, the system is robust and individualized. The use of effective feature 

extraction techniques and then application of ML can increase the accuracy of the system [80, 81]. EMG 

and ML together improve gesture detection by offering precise, flexible, and user-friendly control interfaces 

for a range of applications. 

4.8 Biomedical Research 

In biomedical research, EMG and ML are used for understanding neuromuscular diseases and muscle 

function. ML facilitates the study of intricate EMG patterns, enabling the discovery of patterns and 

biomarkers linked to certain diseases. It enables more in-depth examination of muscle function, which helps 

with understanding neuromuscular diseases, the development of rehabilitation, and biomechanics. ML 

improves the effectiveness of data interpretation by making it easier to spot irregularities or subtle trends 

in big datasets. Understanding stroke-impaired gait modifications and making decisions about post-stroke 

therapy can be made easier [82]. ML approach can help distinguish healthy individuals and patients with 

amyotrophic lateral sclerosis [83]. The ML can help in the identification of critical biomarkers that 

differentiates EMG patterns between patients with certain disease and the healthy individuals [84]. It also 

helps in the identification of a biomarker that causes pain [85]. EMG and ML work together in biomedical 

research to provide accurate, data-driven studies that advance our knowledge of neurological disorders, 

muscular function, and individualized treatment plans. 

5 Challenges and Considerations 

Despite the many benefits that come from combining ML with EMG data collecting for pattern 

identification, researchers and practitioners in this field must also contend with a number of challenges and 

limitations. It is difficult to create universal models since EMG signals can differ greatly between people 

and even within the same person. Personalized calibration is necessary since ML models that are trained on 

one person might not generalize well to another. Work has been conducted to develop ML models robust 

to inter-subject variability and preventing the need for recalibration [86]. The accuracy of signal 

interpretation is affected by crosstalk from adjacent muscles and outside noise sources, which can affect 

EMG signals. Errors in pattern recognition caused by misinterpreting muscle activity might impair the 
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functionality of applications such as prosthesis control. Crosstalk-induced signal contamination is still a 

significant obstacle in the use of surface myography techniques [87]. It is very important to reduce the 

crosstalk and different approaches have been carried out for its reduction and elimination [87]. EMG signal 

interference caused by movement artifacts during dynamic activities can make interpretation more difficult. 

The accuracy of pattern recognition may be impacted by ML models' inability to distinguish between 

artifacts and purposeful muscle activations. Motion artifacts has been studied and the signals have been 

classified as clean or contaminated [88, 89]. 

Accurate signal acquisition depends on the location of the electrodes. Signal distortion may be caused by 

low contact impedance or incorrect positioning. The performance of ML models can be impacted by 

inaccurate electrode placement, which can produce unreliable data. Appropriate electrode placement 

protocol has been developed which can help in obtaining a good classification accuracy and promote future 

clinical applications [90]. To avoid the variability coming from electrode placement, normalization of EMG 

is necessary [91]. EMG features have been studied for the determination of proper electrode placement 

[92]. 

The stability of feature extraction and categorization is impacted by changes in EMG signals brought on 

by muscle fatigue and adaptation over time. It's possible that ML models developed using adapted or 

exhausted muscle signals won't adapt effectively to other muscular states. EMG signal interference caused 

by movement artifacts during dynamic activities can make interpretation more difficult. The accuracy of 

pattern recognition may be impacted by ML models' inability to distinguish between artifacts and 

purposeful muscle activations. ML has been applied to distinguish different EMG artifacts and 

contaminants [93].  

ML models may be biased in favor of the majority class by imbalanced datasets, in which some classes are 

underrepresented. As a result, minority class accuracy will decrease, which will weaken the robustness of 

applications like gesture recognition. So, accuracy cannot be used as a reliable measure for an imbalanced 

dataset [94]. ML models may exhibit poor generalization to new, unknown data due to overfitting to the 

training set. When applied to real-world circumstances, this will result in decreased performance, 

particularly if the training data does not accurately reflect the variability in EMG patterns. Feature selection 

method along with suitable ML algorithm selection can be applied to reduce the overfitting problem [2].  

It might be difficult to create models that generalize well due to individual variability as well as within-

individual variability. ML models might not function reliably for various users or sessions. Low-latency 

processing is necessary for real-time applications like prosthesis control, which could be difficult for 

computationally demanding ML systems. The usability and efficacy of the real-time systems may be 

impacted by delayed responses. ML algorithms have been designed to optimize latency preserving the 

accuracy [95]. 

There are ethical questions about consent, privacy, and possible exploitation of personal data when using 

EMG data for pattern recognition. Gaining the trust of users and complying with regulations requires 

addressing privacy concerns and adhering to ethical norms. Since pattern recognition involves relevant data 

acquired from individuals along with their behavioral and personal information, ethical and privacy 

concerns should be taken into consideration. Real-time EMG signals have been collected without 

compromising the user’s privacy [96]. 

6 Conclusion  

Several important conclusions are drawn from the analysis of ML and EMG pattern recognition. For 

successful EMG pattern detection, signal processing methods including RMS, MAV, and frequency-domain 

characteristics are essential. SVMs, neural networks, KNNs, and decision trees are a few of the diverse 

classification methods that have been effectively used on EMG data for a range of pattern recognition 

applications. Applications of EMG and ML in a variety of domains, such as rehabilitation, prosthetics, and 

human-computer interface, demonstrate how versatile these technologies are. However, because real-time 

EMG pattern identification must be implemented with low latency, high accuracy, and adaptability to 
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dynamic muscle actions, this creates obstacles. The revolutionary effects of EMG and ML on prosthetic 

control, human-computer interface, rehabilitation, and research prospects highlight the significance of these 

technologies in pattern recognition. By interpreting muscle signals to determine the user's intent, EMG and 

ML allow prosthetic device control to be more intuitive and natural. They improve the creation of 

responsive interfaces in human-computer interaction, which enhances the user experience. EMG-based 

pattern recognition helps people with motor impairments regain functional movement by supporting 

individualized rehabilitation programs in the fields of healthcare and rehabilitation. The combination of 

electromyography and ML provides opportunities for additional investigation into the behavior of muscles, 

enhancement of feature extraction techniques, and progression of classification algorithms. To improve the 

overall comprehension and advancement of EMG-based pattern recognition systems, it is recommended 

for this subject that researchers in biomechanics, signal processing, and ML collaborate transdisciplinary. 

Standardized EMG datasets should be freely shared to facilitate comparison, benchmarking, and replication 

of study results. User-centric design requires giving priority to user input and participation in the 

development and assessment of EMG-based applications, especially in the fields of healthcare and assistive 

technology. Establishing moral standards for the appropriate application of ML and EMG technology 

should be a priority for policymakers, particularly in the fields of healthcare and rehabilitation. Finally, 

funding educational activities and training programs will improve practitioners' and researchers' abilities in 

this developing field of pattern recognition, ML, and EMG interaction. 
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