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ABSTRACT

This review concerns quantum control results and methods that, over the years, have been used in the
various operations involving quantum systems. Most of these methods have been originally developed
outside the context of quantum physics, and, then, adapted to take into account the specificities of the vari-
ous quantum physical platforms. Quantum control consists in designing adequate control signals required
to efficiently manipulate systems conforming the laws of quantum mechanics in order to ensure the asso-
ciated desired behaviours and performances. This work attempts to provide a thorough and self-contained
introduction and review of the various quantum control theories and their applications. It encompasses
issues spanning quantum control modelling, problem formulation, concepts of controllability, as well as
a selection of the main control theories. Given the vastness of the field, we tried our best to be as concise
as possible, and, for the details, the reader is pointed out to a profusion of references. The contents of
the review are organized in the three major classes of control problems - open-loop control, closed-loop
learning control, and feedback control - and, for each one of them, we present the main developments in
quantum control theory. Finally, concerning the importance of attaining robustness and reliability due to
inherent fragility of quantum systems, methods for quantum robust control are also surveyed.
Keywords: Quantum Systems, Quantum Control Modelling, Quantum Control Methods.

1. Introduction

Quantum control deals with active manipulation of chemical and physical actions in the atomic and molecular
scale. Recent advances of quantum technologies enable practical applications of quantum control in different sci-
entific areas such as quantum optics, [1], cavity quantum electro-dynamics (QED), [2], atomic spin ensembles, [3],
ion trapping, [4], Bose–Einstein condensation, [5], nitrogen vacancy centres, [6], amongst others, which reveals the
high importance of manipulating quantum phenomena. Quantum phenomena, such as entanglement and coherence,
both rooted in the superposition principle, are at the heart of disparity between classical and quantum physics. En-
tanglement is a phenomenon in which quantum entities are created and/or manipulated such that none of them can be
described without referencing the others, [7]. Quantum coherence depicts the idea of a superpositioning, that is a qubit
is in a superposition of the “0” and “1” states, which results in a speed-up over a variety of classical algorithms. When
such a state experiences decoherence, however, all of its quantumness is typically lost and the advantage vanishes, [8].
From quantum control perspective, the main aim of controlling a system is the manipulation of quantum state trajec-
tory and state evolution via an external control combined with quantum system properties to achieve the desired state.
This paper provides a thorough and self-contained introduction and review of the various quantum control theories
and their applications. In the sequel, we address some of the main issues related to quantum control systems.

Controllability: One of the basic issues that one need to consider for a quantum systems under study concerns
to its controllability, which relates to the possibility of driving a quantum system to a target state by a proper control
signal. The practical importance of controllability is due to the close connection between the universality of quantum
computing and the possibility of attaining small scale transformations, [9, 10]. For controllable quantum systems, the
challenging task of quantum control involves the development of control strategies in addition to effectively manipu-
late multi qubit systems while tackling with the decoherence caused by the unwanted environmental interactions and
other forms of noise to fulfill the quantum control objectives, [11].
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Open-loop Control: Open-loop control has been amongst the early paradigms of quantum control methods. In
this method, the control law is determined and designed prior to an experiment and is later used during the experi-
ment without any modifications. Coherent control strategy, [12], has been widely used in order to ensure quantum
coherence in controlled systems, having accomplished great success in quantum control of chemical reactions, [13].
Open-loop coherent control is an early work on quantum control, in which an open-loop coherent controller acts by
applying time dependent potential to the system. Optimal control theory has also been used for designing open-loop
coherent control schemes, aiming to achieve the best ways of fulfilling quantum control tasks. It formulates the quan-
tum control problem as looking for a set of admissible controls that satisfy the system dynamics while minimizing
a cost functional in order to obtain a control law, [14, 15, 16]. The cost functional is chosen according to the prop-
erties of quantum system, being, as notable examples, time optimal, [17], energy optimal, [15], and optimal unitary
transformation, [18], or a combination of these. There are already various methods to design the optimal controller
in quantum systems, which varies in cost functional, Hamiltonian function, and solving process, [19]. The investiga-
tion of optimal controls to quantum systems has been done through adaptation of conventional optimal control tools
such as convergent iterative algorithms, and Pontryagin maximum principle, [14]. Quantum optimal control has been
exploited for the improvement of process performance in various areas of quantum technologies, e.g., looking for the
optimum sensitivity in magnetic resonance experiments, [20].

Bang-bang control and geometric control are two other common control methods used in quantum systems. Bang-
bang control theory is a type of simple switch control, providing an interesting case for bounded control. For instance,
bounded bang-bang control method has been utilized to obtain optimal time for population transfer problem. This
strategy is used to suppress decoherence and manipulate a class of states, [21]. The other strategy, which is geo-
metric control, has been shown to be satisfactory for low-level systems combined with the Bloch Sphere. Moreover,
optimal control theory and geometric control have been used in the quantum state transformation as in [22]. It is
worth mentioning that closed-loop optimal control strategies have been used to manipulate quantum entanglement,
[23], identifying the parameters of system Hamiltonian, [24], and also to track quantum states, [25]. Despite being
applicable to wide class of optimization problems due to the large problem formulation flexibility, the main weak-
ness of optimal control is due to the two-point boundary value problem, that, typically, are hard to solve, and the
computational performance of the associated iterative procedures depend strongly on their initialization. Therefore,
it is necessary to guess an initial control function to initialize the process and, then, improve it by successive itera-
tions. This procedure demands complex computations, and its application in quantum physics is limited since a quick
response is required, [19].

Control operations of coherent control are unitary transformations, so it may not be possible or very difficult to
control some quantum systems directly through coherent resources. In open-loop control, for such quantum systems
with poor controllability, like finite dimensional open quantum systems with Markovian dynamics, [26], additional
strategies or resources such as incoherent control, [27], can be established to enhance the performance of quantum
control systems. In fact, incoherent control strategies have been identified as an open-loop technique to assist coherent
quantum control, [28]. Although quantum measurements are not suitable to achieve coherent control objectives due
to the fact that they may destroy coherent characteristics of quantum system, they can be utilized as a practical
control tool to improve controllability. Overall, despite the success of open-loop control strategies to control some
simple quantum systems, their applications have significant drawbacks in dealing with perturbations and suppressing
decoherence for complex quantum systems.

Closed-loop Learning Control: Learning control implies a closed-loop iterative procedure in which every cycle
of the loop is performed with an updated sample, [11]. To do so, several learning algorithms have been employed
in which the stability in the presence of disturbances is highly important. Typical optimization methods in quantum
control include gradient-based methods, for instance D-MORPH search algorithm, [29], stochastic searching methods,
such as Genetic Algorithm (GA), [30], Differential Evolution (DE), [31], Particle Swarm Optimization (PSO), [32],
and Reinforcement Learning (RL) Methods, [33, 34], which are global search methodologies that may be combined
with the direction of gradient-like rewards. Stochastic learning control methods have also been considered in the
context of experimental adaptive feedback control, [35]. In adaptive feedback control, a loop is closed, and the results
of measurements are used for the evaluation of success of the applied control and in order to refine it, until the best
approximation to the control target is obtained, [36]. A comparison between gradient decent method, GA, and DE
methods has been done in [37].
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Feedback Control: Quantum feedback control is another class of methods for preparation and manipulation of
quantum systems. We start with Lyapunov control as an open-loop quantum control strategy with feedback design.
The feedback design is used for the construction of control fields which are later applied to the quantum systems in
an open-loop way, that is, the output state of the designed feedback control system is obtained from a mathematical
model. Since the feedback information acquisition via measurement demolishes the quantum state, it would be diffi-
cult to straightly apply Lyapunov approaches to quantum feedback controller design. Therefore, the feedback control
design would be done via simulation, and a sequence of controls would be obtained and applied to the quantum system
to be controlled in an open-loop way. The procedure in Lyapunov control design include three main parts including
the selection of the Lyapunov function, designing the feedback law, and analysing asymptotic convergence, [38, 39].
In Lyapunov control design method, the control law is obtained from the solution of the partial differential equa-
tion via Lyapunov indirect stability theorem with no iterations, which subsequently results in rapid quantum control.
The method has been successfully used for driving quantum systems into decoherence-free subspaces, controlling
open quantum systems in decoherence-free subspaces, controlling entanglement generation for distant atoms, and
especially for quantum state transfer. Another closed-loop method, helping attain improved properties for quantum
systems, is variable structure control, [40]. This method provides the possibility of altering the structure of controller
conforming to the defined switching logic. Therefore, the structure of the control law differs according to the position
of the state trajectory; the method provides fast switching from one smooth control law to another, and is appropriate
for qubit state preparation, [41, 42]. Generally, in feedback control method, the system’s quantum state or trajectory is
used to evolve the system towards some desired outcome, making quantum control more effective. We will study the
rest of common methods in quantum feedback control in two main typical categories: measurement-based feedback
control, and coherent feedback control. In measurement-based method, some observables or signals of the system are
measured, and the result is processed in a controller in order construct a classical control signal for driving a proper
actuator that exerts direct influence on the quantum system to be controlled. Although the system under control is
a quantum system, the controller may not be a quantum one; classical or hybrid quantum-classical controllers may
also be used. Two fundamental techniques for information accession are projective measurement (or von Neumann
measurement), [43], and continuous weak measurement [44]. Markovian quantum feedback, [45], is one of the main
paradigms of quantum feedback control based on measurement, with applications in several physical problems. This
method ignores any time delay and the designed controller is memoryless. Another important paradigm is Bayesian
feedback method, in which the dynamical equation is non-Markovian, and its process contains two stages. The first
stage is to estimate the dynamical variables. The best estimations can be obtained continuously from the measurement
records. The second stage is the feedback control, in which the estimates are fed back to the system dynamics con-
troller. This method has already been applied in quantum state preparation, [46], and also for quantum error correction,
[47]. Weak and non-demolition measurements make it possible to change the evolution continuously via Hamiltonian
feedback that depends on the measurement record, [48], but for most problems, it is not practical to design quantum
non-demolition measurements. Weak measurement can be modelled via a stochastic master equation by introducing
an auxiliary system that is weakly coupled to the system under study. The applications of this method include weak
control of entanglement generation, [49], and control of a single qubit, [50]. The main drawbacks of measurement-
based feedback are: perturbation of the quantum system through measurement, limited information processing speed,
and the fact that the information taken from measurement is stochastic. Coherent-feedback control is another method
used in quantum feedback control. In this method, a feedback controller, which is a full quantum system, is connected
to the quantum system under control in a feedback loop configuration that preserves quantum coherence. Coherent
control with quantum (coherent) feedback is especially useful for the generation, transformation, and transfer of en-
tanglement that cannot be achieved by coherent control with classical feedback. The two noise-reducing controllers,
H∞ controller, [51], and linear quadratic Gaussian controllers, [52], have natural coherence control analogues. By
optimizing a quadratic cost functional, quantum linear-quadratic-Gaussian control can be developed in order to seek
an optimal feedback control law for a stochastic linear system, [53].

Robust Control: Robustness has been an essential property for quantum technologies due to inevitable distur-
bances and uncertainties. H∞ controller synthesis problem can be formulated for a class of non-commutative linear
stochastic systems including several interesting examples in quantum world, [51]. Sliding mode control is another
method, [54], yielding control robustness. Sliding mode control can be considered as one of the main approaches
in variable structure control of classical systems, however, it can be used to deal with uncertainties in the quantum
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feedback control. Sliding mode control is also suitable for quantum systems evolving with nonlinear equations, [55],
quantum systems with bounded uncertainties in their system Hamiltonian, [54], two-level quantum systems, [56], and
also for robust control of a single qubit, [57]. In linear quadratic Gaussian design, referred to as risk neutral opti-
mal control, cost is additive while in linear exponential quadratic Gaussian control, known as risk sensitive optimal
control, cost is multiplicative. It is known that risk sensitive controllers have a close connection with robustness.
Furthermore, various robustness properties of quantum filtering and estimation have been presented, e,g., guaranteed-
cost, [53], and risk-sensitive filtering, [58]. Quantum ensemble control, [59], is another robust control method, which
involves controlling a continuum of dynamical systems with different values of parameters characterizing the system
dynamics by using the same control signal. In addition, sequential convex programming, [60], is a local optimization
method that can be used to ensure error suppression. Dynamical decoupling, [61], can also be mentioned as another
favourable method for robust control of quantum systems. This method is consistent with other desired functionalities,
e.g., quantum gates, [62].

The remainder of this work is organized as follows: We first review several approaches for modelling a quantum
system to be controlled. Then, we turn to the context of controllability of quantum systems and present some of the
main definitions and theorems. Next, we recall the most widely-expanded control methods for analyzing quantum
control problems in four main categories, including open-loop control, closed-loop learning control techniques, feed-
back control, and robust control. Each method is presented by introducing its specific aspects and recent applications
to the field. The paper ends with brief conclusions and an overview on prospective research challenges.

2. Quantum Control Models

In the mathematical formulation of quantum mechanics, the state of a closed quantum system is described by a
unit vector |ψ⟩ in a complex Hilbert spaceH using the Dirac representation, [63]. A quantum state can be represented
by the wavefunction vector |ψ⟩ = cos θ

2 |0⟩ + eiφ sin θ
2 |1⟩, where θ ∈ [0, π], φ ∈ [0, 2π], and |0⟩ and |1⟩ correspond

to the states zero and one for a classical bit, respectively, [64]. However, the state of open quantum systems or
quantum ensembles cannot be expressed as unit vectors and is described through density operator ρ : H → H ,
which is Hermitian, positive, and has trace equal to one. For instance, an ensemble of pure states

∣∣∣ψ j

〉
with respective

probabilities p j can be described as ρ ≡
∑

j
p j

∣∣∣ψ j

〉 〈
ψ j

∣∣∣, where
〈
ψ j

∣∣∣ = ∣∣∣ψ j

〉†
denotes the adjoint, and

∑
j

p j = 1. There

are several approaches for modelling a quantum system to be controlled. In Schrödinger model of quantum mechanics,
bilinear models, including Schrödinger and quantum Liouville equations, are used to express closed quantum systems,
while Markovian master equation and stochastic mater equation are used for open quantum systems that are exposed
to unavoidable interactions with external environment such as control inputs and measurement devices. However, the
adoption of Heisenberg model may be more convenient for some cases. This class of systems are modelled by linear
quantum stochastic differential equations. In the sequel, we provide a brief review of some relevant quantum control
models.

2.1. Bilinear models

2.1.1. Schrödinger
In quantum mechanics, the evolution of state vector |ψ(t)⟩ can be described by Schrödinger equation

iℏ
∂

∂t
|ψ(t)⟩ = H(t) |ψ(t)⟩ , |ψ(t = 0)⟩ = |ψ0⟩ (1)

where i is the imaginary unity, H(t) is the quantum-mechanical Hamiltonian of the system, which is a Hermitian
operator onH , and ℏ is the reduced Planck’s constant, usually considered as a unit for convenience. One has to notice
that the term “Hamiltonian” used here is the quantum mechanical Hamiltonian and is not the same as Pontryagin
Hamiltonian in dynamic optimization.

The system control can be recognized by a control function set uk(t) ∈ R, which is connected to the quantum
system through time independent interaction Hamiltonians Hk(k = 1, 2, . . . ). Therefore, the controlled evolution
is determined by the total quantum mechanical Hamiltonian H (t) = H0 +

∑
k

uk(t)Hk. Here, H0 indicates the free
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Hamiltonian, and Hk is the interaction Hamiltonian. The solution of the Schrödinger equation can be expressed in
terms of the unitary time evolution operator U(t, t0) that can transform the pure state |ψ (t0)⟩ at some initial time t0
to the pure state |ψ(t)⟩ at time t, so |ψ(t)⟩ = U(t, t0) |ψ (t0)⟩ and the operator equation for the time evolution operator
U (t, t0) is obtained as

iU̇(t) = H(t)U(t, t0), U (t0) = I (2)

where U (t, t0) is a unitary operator. For an isolated physical system, in which the Hamiltonian is independent of time,
equation (2) can easily be combined to yield the famous formulation U (t, t0) = e−iH(t−t0). However, for closed quantum
systems, in which the system under consideration may be driven by external forces, the dynamics of the system can be
formulated in terms of a possibly time-dependent Hamiltonian generator, so the solution of (2) subjected to its initial

condition can be expressed as a time-ordered exponential term U (t) = T← exp

−i
t∫

t0

H(s)ds

, where T← denotes

the chronological time-ordering operator. For an N-dimensional quantum system, the eigenstates set D̃ = {|ϕi⟩}
N
i=1

form an orthogonal basis forthe N-dimensional complex Hilbert space H . Therefore, the expansion of the evolving

state in terms of eigenstates according to quantum superposition principle, gives |ψ (t)⟩ =
N∑

j=1
c j (t)

∣∣∣ϕ j

〉
. Considering

C (t) = (c1 (t) , c2 (t) , . . . , cN (t)) results in

iĊ (t) = H(t)C(t), C (t0) =
(〈
ϕ j |ψ (t0)

〉)N

j=1
. (3)

For (3), an admissible control set is found to obtain desired coefficient trajectories and achieve the desired state
trajectory. Equations (1), (2), and (3) can easily be converted to one other whenever the controllability is satisfied,
[63].

2.1.2. Liouville-von Neumann
For systems in mixed states, quantum statistical ensemble can be represented by the statistical density operator

ρ (t) = U (t, t0) ρ (t0) U† (t, t0), in which ρ (t0) =
∑
α

wα |ψα (t0)⟩ ⟨ψα (t0)|with wα indicating positive weights and |ψα (t0)⟩

being the normalized state vector evolving in time according to (1). By differentiating ρ (t) with respect to time,
Liouville-von Neumann equation,

iρ̇ (t) =
[
H (t) , ρ (t)

]
(4)

is obtained, where ρ (t) is the variable to be controlled. Equation (4) may also be written similar to its classical coun-
terpart as ρ̇ (t) = L (t) ρ (t), in which L is Liouville super-operator. Liouville equation conducts the representation

ρ (t) = T← exp

 t∫
t0

L(s)ds

 ρ (t0) for time dependents and ρ (t) = exp [L (t − t0)] ρ (t0) for time independent Hamiltoni-

ans, [65].

2.2. Master Equations

2.2.1. Markovian Model
The evolution of closed quantum systems is unitary, and, therefore, the spectrum of the quantum state is main-

tained. However, the evolution of open quantum systems cannot be expressed through unitary transformations. Prin-
cipally, an open quantum system S is considered to be coupled to an environment B, so the Hilbert space of the total
system is represented by H = HS ⊗ HB, where ⊗ is the tensor product. The total Hamiltonian may take the form
of H (t) = HS ⊗ IB + IS ⊗ HB + ĤI (t), where ĤI describes the system environment interaction, IB and IS denote the
identity in the Hilbert spaceHB andHS, respectively. Hence, the observables referring to S have the form of A ⊗ IB,
where A indicates an operator acting on the Hilbert space HS. The expectation value of the observable A is deter-
mined by ⟨A⟩ = trS {AρS}, where ρS(t) = trBρ(t) is the reduced density operator of the open quantum system S. The
notation trX denotes the partial trace over the space X. In a similar way, the dynamics of the reduced density matrix

ρS is described by
d
dt
ρS (t) = −itrB

[
H (t) , ρ (t)

]
. By neglecting memory effects, the reduced system dynamics can

be formulated through a quantum dynamical semigroup. Let consider the dynamical map V (t) : S (HS) → S (HS),
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which is a convex linear completely positive trace preserving (CPTP) quantum operation, expressing the state evolu-
tion of the open quantum system. The dynamical map can yield to the representation V (t) ρS =

∑
α,β

Wαβ (t)ρS W†αβ (t),

where Wαβ are operators in HS satisfying
∑
α,β

W†αβ (t) Wαβ (t) = IS. Also consider the linear map L, which is the

generator of the semigroup, regarded as a generalisation of the Liouville super operator. Hence, the semigroup in
the exponential form can be represented as V (t) = exp (Lt) yielding to the Markovian quantum master equation
d
dt
ρS (t) = LρS (t), known as Lindblad equation, for the reduced density operator of an open system. A general form

ofL of a quantum dynamical semigroup can be constructed on a Hilbert space of dimension N with the corresponding
Liouville complex space of dimension N2. A complete basis of orthonormal operators {Fi}

N2

i=1 can be chosen such that(
Fi, F j

)
≡ trS

{
F†i F j

}
= δi j with one of the basis operators proportional to the identity and other basis operators trace-

less, for convenience. Therefore, for an N-dimensional open quantum system with Markovian dynamics, the standard
form of the generator is written through the Markovian master equation, [65, 66],

LρS = −i
[
H, ρS

]
+

N2−1∑
j,k=1

a jk

(
F jρSF†k −

1
2

{
F†k F j, ρS

})
(5)

where the Hermitian operator H = 1
2i

(
F† − F

)
in which F = 1

√
N

N2−1∑
j=1

a jN2 F j, and the coefficients are defined as a jk =

lim
ε→0

c jk(ε)
ε

, j, k = 1, . . . ,N2 − 1 and c jk (t) ≡
∑
αβ

(
F j,Wαβ (t)

) (
Fk,Wαβ (t)

)∗
. Since the matrix coefficient a =

(
a jk

)
is posi-

tive, it is possible to diagonalize it by means of a unitary transformation U, such that UaU† = diag (γ1, γ2, · · · , γN2−1).
Here, the eigenvalues γ j are non-negative and physically specify the relevant relaxation rates, [66]. Therefore, by in-

troducing the new set of Lindblad operators Al through F j =
N2−1∑
l=1

ul jAl, the diagonal form of a quantum dynamical

semigroup can be written down as

LρS = −i
[
H, ρS

]
+

1
2

N2−1∑
l=1

γl

([
AlρS, A

†

l

]
+

[
Al, ρSA†l

])
. (6)

It is more convenient to present the dissipator as the second term of (6) and rewrite the quantum master equation as

d
dt
ρS (t) = −i

[
H, ρS (t)

]
+D (ρS (t)) . (7)

Open systems subjected to external time dependent fields are described via a time dependent generator. A time

dependent generalization of Markovian quantum master equation can be expressed as
d
dt
ρS (t) = L (t) ρS (t).

2.2.2. Adjoint Model
The theory of quantum dynamical semigroup is commonly represented by the Heisenberg rather than Schrödinger

model. For every system operator A in Hilbert spaceHS in Schrödinger model, it is possible to define a corresponding
operator AH (t) in Heisenberg model related by trS {A (V (t, 0) ρS)} = trS

{(
V† (t, 0) A

)
ρS

}
= trS {AH (t) ρS } being the

Lindblad generator allowed to be time dependent. The adjoint propagator V† (t, t0) denotes the dynamical map in

Heisenberg model defined as V† (t, t0) = T→ exp

 t∫
t0

L† (s)ds

, and L† indicates the adjoint generator defined by

trS {AL (t) ρS} = trS
{(

L† (t) A
)
ρS

}
. The adjoint propagator satisfies ∂

∂t V
† (t, t0) = V† (t, t0)L† (t) and expresses how

operators evolve in time in the Heisenberg model as AH (t) = V† (t, 0) A. It follows the adjoint master equation,

d
dt

AH (t) = V† (t, 0)
{
L† {t} A

}
· (8)
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An important special case for (8) is when Lindblad generator is independent of time as in (6). In this case, the adjoint
equation (8) can be simplified to d

dt AH (t) = L†AH (t). Hence, the right-hand side of equation (8) would only depend
on AH (t) at time t, [65].

2.3. Stochastic Master Equation
In feedback control, a quantum system is continuously monitored to obtain feedback information that is used

while the measurement proceeds to change the system Hamiltonian in order to obtain the desired behaviour. The state
evolution of a system in an infinitesimal time increment dt is described by the stochastic Schrödinger equation

d |ψ⟩ =
{
−κ(X − ⟨X⟩)2dt +(2κ)

1/2 (X − ⟨X⟩) dW
}
|ψ (t)⟩ (9)

where X is an observable with ⟨X⟩ = tr (Xρ), κ is a measurement strength parameter, and dW indicates a Wiener

increment. The set of measurement increments dy(t) = ⟨X⟩ dt +
dW

(8κ)
1/2

is called the measurement record. It is

possible to write (9) in terms of density operator and obtain

dρ = −κ
[
X,

[
X, ρ

]]
dt + (2k)

1/2 (Xρ + ρX − 2 ⟨X⟩ ρ) dW (10)

known as the stochastic master equation. One should have in mind that all terms must be kept proportional to dW2, and
we define ρ (t + dt) ≡ ρ (t)+dρ. Since the density operator ρ in (10) uses information from continuous measurements,
it is a conditional state. Depending on different measurement processes, stochastic master equation may be written
in various forms, [67, 68], however, (10) indicates a typical formula. In general, the existence of the environment
memory effect makes the most important difference between Markovian systems and non-Markovian systems.

2.4. Linear Quantum Stochastic Differential Equation
As mentioned before in Heisenberg model, time dependent operators on Hilbert space may be used to describe the

quantum dynamics. Let consider a class of non commutative linear stochastic systems described as

dx (t) = Ax (t) dt + Bdw (t) , x (0) = x0

dy (t) = Cx (t) dt + Ddw (t)
(11)

where A, B, C, and D are real Rn×n, Rn×nw , Rny×n, and Rny×nw matrices, respectively, with positive integer n, nw, and
ny. x (t) = [x1 (t) . . . xn (t)]T indicates a vector of state variables and x0 shows the system state variable at initial time.
The vector w expresses the input signals admitting the decomposition dw (t) = βw (t) dt + dw̃ (t), where βw (t) is a self
adjoint, adapted process, and w̃ (t) indicates a vector of self adjoint quantum noises, satisfying dw̃ (t) dw̃T (t) = Fw̃dt,
[69], in which Fw̃ is a non negative Hermitian matrix. To make sure that the system described by (11) is physically
realizable, additional constraints need to be added.

3. Controllability in Quantum Systems

One of the main theoretical and practical notions in the control of quantum systems concerns the possibility of
controlling an especial system by means of a proper control signal. The importance of controllability is due to its
connection with the universality concept in quantum computing. Various kinds of controllability for quantum systems
have been introduced, being some of them briefly presented in this section. Here, the N-dimensional complex unit
sphere and unitary group are denoted by S N

C
and U (N) (or S U (N)), respectively, with u (N) (or su (N)) denoting the

corresponding Lie algebra. The Lie algebra generated by the operators {−iH0,−iH1, . . . ,−iHK} is mentioned as L0.
To address the existence of controls that can produce the desired results, definitions of controllability and reachability
need to be adopted. For the controlled quantum system (1), the state |ψ(t)⟩ in the unit sphere evolves from |ψ0⟩ on a set
M, which forms a differential manifold, finite or infinite dimensional. Therefore, given |ψ0⟩ ,

∣∣∣ψ f

〉
∈ M, the state

∣∣∣ψ f

〉
is reachable from |ψ0⟩ at time t f > 0 if there exist an admissible control u(t) such that ψ

(
t = t f |u, ψ0

)
= ψ f . The set of

system states that are reachable from |ψ0⟩ at time t f , i.e., the set of points in S N
C

reachable at t f , is denoted by Rt f (|ψ0⟩),
and the set of system states that are reachable from |ψ0⟩ at any positive time is denoted by R (|ψ0⟩) ≡

⋃
s≻0

Rs (|ψ0⟩), [70].
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Definition 3.1. (Complete Controllability) The system is said to be completely controllable if R (|ψ0⟩) = M is valid
for all |ψ0⟩ ∈ M, [10, 71].

Definition 3.2. (Operator Controllability) If every desired admissible operation on an arbitrary state can be per-
formed by means of a proper control field, then, the quantum system (2) is said to be operator-controllable, [10, 72].

Definition 3.3. (State Controllability) The quantum system (1) is (pure) state controllable if for every pair of initial
|ψ0⟩ and final

∣∣∣ψ f

〉
states in S N−1

C
there exist control functions {uk (t)} and a time t > 0 such that the corresponding

solution of (1) at time t, with initial condition |ψ0⟩, is |ψ (t)⟩ =
∣∣∣ψ f

〉
, [10, 72].

Definition 3.4. (Equivalent-state Controllability) The quantum system (1) is equivalent state controllable if for every
pair of initial |ψ0⟩ and final

∣∣∣ψ f

〉
states in S N

C
there exist controls {uk (t)} and a phase factor θ ∈ [0, 2π) such that the

solution |ψ (t)⟩ of (1) satisfies |ψ (0)⟩ = |ψ0⟩ and |ψ (t)⟩ = eiθ
∣∣∣ψ f

〉
, [10].

Definition 3.5. (Eigenstate Controllability) By considering |ϕ1⟩ , |ϕ2⟩ , . . . , |ϕn⟩ as the n eigenstates of the internal
Hamiltonian of an infinite dimensional system, then system (1) is strongly eigenstate controllable if

⋃n
i=1 Rt (|ϕi⟩) =

S N
C for all positive t, and Rt (|ϕi⟩) (i = 1, 2, . . . , n) is called the eigenstate-from reachable set of eigenstate |ϕi⟩. If⋃n
i=1 R (|ϕi⟩) = S N

C holds, then the quantum system is called eigenstate controllable. If a quantum system is pure state
controllable, it must also be eigenstate controllable, [73].

Definition 3.6. (Density Matrix Controllability) Let consider a pair of unitarily equivalent density matrices ρa and
ρb. If there exist a control function uk (t) at time t > 0, such that the solution of (2) satisfies U(t)ρ1U∗(t) = ρ2,
the quantum system is density matrix controllable. This notion of controllability is especially useful when a mixed
ensemble of states is considered, [10, 71].

Definition 3.7. (observable Controllability) If for any observable A and initial density operator ρ0, there exists an
admissible control-trajectory pair u(t) and U(t) defined for t0 ≤ t ≤ t f (with t f < ∞), such that the ensemble average of
the observable tr

[
ρ (t) A

]
assumes any kinematically admissible value, the quantum system subjected to Hamiltonian

dynamics is observable controllable, [71].

Definition 3.8. (Analytical Controllability) Let |ψ0⟩ be an analytic vector from an analytic domainDw dense in state
space. The quantum system in (1) is strongly analytically controllable (respectively, analytically controllable) on
M ⊆ S N

C if Rt (|ψ0⟩) = M ∩Dw holds for all t ≻ 0 and all |ψ0⟩ ∈ M ∩Dw (respectively, if R (|ψ0⟩) = M ∩Dw holds for
all |ψ0⟩ ∈ M ∩Dw), [70].

There already exist several algorithms to test the controllability of some particular quantum systems by using the
root space decomposition of S U(N), [74]. The common controllability methods focus on finite dimensional quantum
systems for which the controllability can be described by the structure and rank of corresponding Lie groups and
Lie algebras leading to a mathematical treatment of closed quantum systems. However, verifying these criteria may
be difficult to compute for large dimensional quantum systems. Furthermore, the results obtained this way give only
sufficient conditions for exact controllability, so another technique has been proposed based on graph theory for which
the criteria on the internal and interaction Hamiltonians are presented to ensure full wavefunction controllability,
[75]. By considering (3) with only one single control input u(t) and matrices A and B as internal and interaction
Hamiltonians, respectively, we can express that

iℏĊ (t) = AC (t) + u (t) BC (t) ;
C (t = 0) = C0

C0 =
(
c0 j

)N

j=1
; c0 j =

〈
ϕ j |ψ0

〉
;

N∑
j=1

∣∣∣c0 j

∣∣∣2 = 1.

(12)

Then, the system is associated to a non-oriented graph G = (V, E), known as the connectivity graph, [76], in which the
set of vertices V and the set of edges E correspond to the set of eigenstates |ϕi⟩, and the set of all pairs of eigenstates
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directly coupled by the matrix B, respectively.

G (V, E) :
V = {|ϕ1⟩ , . . . , |ϕN⟩} ,

E =
{(
|ϕi⟩ ,

∣∣∣ϕ j

〉)
; i < j, Bi j , 0

} (13)

The decomposition of the above-mentioned graph into connected components can be interpreted by Gα (Vα, Eα),
α = 1, . . . ,K, and ωkl = λk − λl with k, l = 1, . . . ,N denotes the eigenvalue difference for matrix A.

Theorem 3.9. The system (12) is controllable in terms of the connectivity graph, and wavefunction controllability
can be assessed if the following three conditions hold, [75]:

• (i) The graph G is connected (K=1).

• (ii) The graph G does not have degenerate transitions, which means for all (i, j) , (a, b), i , j, a , b, such that
Bi j , 0 and Bab , 0 then ωi j , ωab.

• (iii) For each i, j, a, b = 1, . . . ,N such that ωi j , 0 then
(
ωab

ωi j

)
∈ Q, in which Q represents the set of all rational

numbers.

However, there are alternative controllability results that completely exclude the last assumption, [77].

Methods to design control laws enabling transitions between given states are very important. However, it is
usually not possible to design such control laws from the results obtained from the controllability. Therefore, useful
methods need to be developed. One simple scheme to construct an appropriate control law is based on Lie group
decomposition, [19]. This method is constructive but may be hard to fully address the decomposition for feasible
systems, [78].

4. Open-loop Control

In this method, the control law is completely determined prior to the control experiment, and then used during
the experiment without modifications. Coherent open-loop control applies time dependent potentials

∑
k

uk(t)Hk to the

system. A quantum system is open-loop controllable if the potentials can be modulated by varying control fields so
that the system is driven from some known initial state to the target state.

4.1. Optimal Control

A general optimal control problem can be formulated as follows: Given a set X of state functions x : R → Rn,
and a setU of control functions u : R → Rm, find the functions x ∈ X and u ∈ U, which minimize a cost functional
J : X × U → R and satisfy the dynamical constraint ẋ = f (x, u). Virtually, any control problem can be formulated
as a particular case of the above-mentioned general optimal control problem, [79]. Therefore, for a system with state
vector x(t) controlled by u(t) over the time interval [0,T ], the objective functional J in the form of a problem of Bolza,
is expressed as

J := Φ (x (T ) ,T ) +

T∫
0

L (x (t) , u(t), t) dt (14)

with Φ and L smooth functions Rn ×R→ R,Rn ×Rm ×R→ R, respectively. The task is to minimize J subjected to
the condition that the system dynamics is satisfied, with x (0) = x0 and u(t) restricted to the set of admissible controls.
By introducing a Lagrange multiplier, the most well-known necessary conditions to minimize (14) are known as
Pontryagin’s maximum principle (PMP), [14, 15, 79]. Quantum optimal control theory is an extremely powerful tool
for achieving quantum control objectives in most practical control problems, [80]. The key concept of optimal control
is that the control law will be obtained via minimizing a cost function that drives system (1) from |ψ(0)⟩ = |ψ0⟩ to
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the target |ψ(T )⟩ = |ψd⟩. From now onwards, the problem of determining the control fields u ∈ L2 (C, [0,T ]) while
satisfying equation (1) is considered. In this context, a general cost functional can be expressed as, [81],

J(|ψ⟩ , u) =
1
2
∥|ψ (T )⟩ − |ψd⟩∥

2
Cn +

γ

2
∥u∥2L2(C,[0,T ]) +

1
2

n∑
j=1

α j

∥∥∥ψ j

∥∥∥2
L2(C,[0,T ]) (15)

with the weighting factors γ > 0, α j ≥ 0. It is obvious that further constraints can also be added in the same way.
The problem of optimal control for minimizing cost functional (15) subject to equation(1) under normal conditions
admits a solution

(
ψ̄, ū

)
∈ H1 (Cn, [0,T ])×L2 (C, [0,T ]), [82]. In order to compute the first order necessary optimality

conditions, the method of Lagrange multipliers is used, so the Lagrangian function is defined as

L (|ψ⟩ , |p⟩ , u) = J (|ψ⟩ , u) + Re
〈
p, iψ̇ − Hψ

〉
(16)

where ⟨ϕ, ψ⟩ =
T∫

0
ϕ.ψ∗dt, in which the symbols “*” and “.” mean the complex conjugate and the typical vector-scalar

product in Cn, respectively. The necessary conditions for the minimization problem

L
(∣∣∣ψ̃〉 , |p̃⟩ , ũ) = inf

|ψ⟩∈X0
t ,|p⟩,u∈Xt

L (|ψ⟩ , |p⟩ , u) (17)

in which Xt = L2 (Cn, [0,T ]) and X0
t = Xt

⋂
{ψ : ψ(0) = ψ0}, are derived by equating to zero the Fréchet derivative of

L with respect to the triple (|ψ⟩ , |p⟩ , u). Therefore, the optimality system∣∣∣ψ̇〉 = −i (H0 + Hku) |ψ⟩ , |ψ (0)⟩ = |ψ0⟩

|ṗ⟩ = −i
(
H∗0 + Hku

)
|p⟩ − q,

|p (T )⟩ = −i (|ψ(T )⟩ − |ψd⟩)

u =
1
γ

Re
[
|p⟩

(
∂ (H0 + Hku)

∂ure
|ψ⟩

)∗]
+ i

1
γ

Re
[
|p⟩

(
∂ (H0 + Hku)

∂uim
|ψ⟩

)∗] (18)

is obtained, where q j = α jψ j and u = ure + iuim, [19]. Once optimal control formulas are established, it is possible
to formulate a numerical algorithm to solve the optimality equations for given initial and final states, [83, 84]. For
instance, iterative algorithms such as Krotov-type, [85], and GRAPE-type, [86], have been used to generate controls.
A detailed comparison between these two schemes can be seen in [87, 88]. Moreover, based on the explicit calculation
of the extremal solutions of the PMP, there exist analytical results applicable for two and three level quantum systems,
[89], (to see a comparison between two- and three-level models, refer to [90]). The following indicates some applica-
tions of GRAPE algorithm. Given H0 and Hk specifying the quantum system, the objective of GRAPE algorithm is
then to seek optimal controls uk(t) in order to perform a desired task. The gradient-based learning method can also be
extended to the optimal control of following problems:

4.1.1. Pure State Transformation
The example of steering a pure quantum system from an initial state |ψ0⟩ to a desired target state |ψd⟩ over a

time interval [0,T ] is considered. The performance function to be maximized is the quantum fidelity determining
the transition probability between |ψd⟩ and |ψ(T )⟩ by the modulus of their overlap as ϕ1 := Re {⟨ψd |ψ (T ) ⟩}. The
controls are restricted to a piecewise-constant form, so the evolution can be decomposed into M time slices of length

∆t = T/M with the Hamiltonian of the j’th slice as H( j) = H0 +
m∑

k=1
u( j)

k Hk, which is constant over every ∆t. Therefore,

the unitary propagator U(T ) can be obtained via direct integration of (2) yielding U (T ) = UMUM−1 . . .U2U1 with
U j = exp

{
−i∆tH( j)

}
, so the quality function can be rewritten as ϕ1 = Re {⟨ψd |UMUM−1 . . .U2U1 |ψ0 ⟩}. The derivative
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of this with respect to u( j)
k is

∂ϕ1

∂u( j)
k

= Re


〈
ψd

∣∣∣∣∣∣∣UMUM−1 . . .U j+1
∂U j

∂u( j)
k

U j−1 . . .U2U1

∣∣∣∣∣∣∣ψ0

〉, in which

∂U j

∂u( j)
k

= −i


∆t∫

0

U j (τ) HkU j (−τ)dτ

 U j ≈ −i∆tHkU j (19)

where U j (τ) = exp
{
−iτH( j)

}
, and for all time slices the bound ∆t ≪

∥∥∥H( j)
∥∥∥−1

is considered. By substitution, the
approximate gradient is given as

∂ϕ1

∂u( j)
k

≈ Re
{
−i∆t

〈
ψc

∣∣∣UM . . .U j+1HkU j . . .U1 |ψ0

〉}
(20)

The performance function will increase by choosing

u( j)
k → u( j)

k + ε
∂ϕ1

∂u( j)
k

, (21)

where ε is a small positive value. Gradient formula (20) form the foundation of the GRAPE algorithm. For this
example of direct ascent of ϕ1, the algorithm can be outlined as follows:

(i) Set the M × m initial control amplitudes u( j)
k .

(ii) Calculate the forward-propagated states as∣∣∣ψ j

〉
:= U j . . .U1 |ψ0⟩ for j = 1, . . . ,M.

(iii) Calculate the backward-propagated states as∣∣∣λ j

〉
:= U†j+1 . . .U

†

M |ψc⟩ for j = 1, . . . ,M.

(iv) Calculate (20) and update according to (21).

(v) With the new controls, go to the second step.

With sufficiently small step size at each iteration and exact gradients, (see [91]), the algorithm is guaranteed to con-
verge monotonically to a local maximum for performance function, [92]. As seen before, for cases in which controls
are smooth continuous functions, a gradient formula of the same form as (20) can be obtained quickly from PMP.

4.1.2. Unitary Gate Synthesis
For some applications, it is necessary to implement unitary gate synthesis. The performance function for obtaining

the maximum overlap with a target gate Uc is defined as ϕ2 :=
∣∣∣∣tr {

U†c U (T )
}∣∣∣∣2, and gradients are obtained as

∂ϕ2

∂u( j)
k

≈ 2 Re
{
−i∆t

〈
P j

∣∣∣HkX j

〉 〈
X j

∣∣∣P j

〉}
(22)

with X j := U j . . .U1 and P j := U†j+1 . . .U
†

MUc .

4.1.3. Subspace Transformation
In subspace to subspace transfer, any number d of initial and target states may be specified through the performance

function
ϕ3 :=

∣∣∣∣〈ψ(1)
c |U (T )|ψ(1)

0

〉
+· · ·+

〈
ψ(d)

c |U (T )|ψ(d)
0

〉∣∣∣∣2· (23)

The gradients of ϕ3 are a trivial variation of those for unitary gate synthesis, [92]. In order to reduce relaxation
effects, it is very important to apply the control. In other words, it is desirable to recognize the minimum time
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required to perform a quantum computation by means of a set of physical resources, [93]. The two-level quantum
systems have important applications, amongst them the quantum state transformation is of high importance, [94],
which should typically be performed in the shortest possible time. However, the control time is inversely proportional
to the control amplitude. Hence, to achieve a very fast state transfer, one needs a very large control amplitude, which
is not practically possible since the control signal has to be bounded. There are several researches on time-optimal
control of quantum systems including the state transfer problem for two-level systems using the geometric control in
the x–y plane, [95], the time optimal transfer of state with bounded bang-bang control, [96], and time-optimal control
of population transfer for two-level quantum systems with bounded control, [97].

4.2. Geometric Control

The same problem as [98] for a spin 1/2 system in a constant field along z-axis controlled through radio-frequency
(RF) pulses producing an x rotation of the spin is considered. By ignoring the global phase, the initial state |ψ0⟩ and
target state |ψd⟩ can be denoted by

|ψ0⟩ = cos
θ0

2
|0⟩ + eiφ0 sin

θ0

2
|1⟩

|ψd⟩ = cos
θd

2
|0⟩ + eiφd sin

θd

2
|1⟩

(24)

where θ0, θd ∈ [0, π] and φ0, φd ∈ [0, 2π]. Given any target unitary transformation U f ∈ S U (2) satisfying |ψd⟩ =

U f |ψ0⟩, there exist a unique β ∈ [0, π] determining the minimum time in order to accomplish U f such that U f =

exp
(
−iα

2 σx

)
exp

(
−iβ
2 σz

)
exp

(
−iγ
2 σx

)
, with α, γ ∈ R. β can be calculated, [99], as

β = |arccos (sin θ2 cosφ2) − arccos (sin θ1 cosφ1)| · (25)

The condition holds for a time-optimal transition with unbounded control. For a more general case of a two-level
system, the geometric control, [94, 22], can be considered as the following decomposition in x-y plane{

Ωx (t) = M cos (2Et + φ)
Ωy (t) = −M sin (2Et + φ) (26)

where M indicates the amplitude, and φ ∈ [0, 2π) is the initial phase of the controls. Therefore, the total Hamiltonian
is

H(t) = H0 + Hk(t) =
(
−E Mei(2Et+φ)

Me−i(2Et+φ) E

)
(27)

in which H0 = diag (E1, . . . , En), with E j real numbers expressing the energy levels such that
n∑

j=1
E j = 0, H1 = σx,

and H2 = σy. From the Schrödinger equation (1), state evolution operator can be deduced as

U (t) =
(
eiEt 0
0 e−i(Et+φ)

) (
cos (Mt) i sin (Mt)
i sin (Mt) cos (Mt)

) (
1 0
0 eiφ

)
· (28)

For known initial (θ0, φ0, 1) and target (θd, φd, 1) points on the Bloch Sphere, the minimum time transfer under geo-

metric control would be tmin =
∆θ

2umax
, with umax indicating the maximum amplitude of the control, [19].

4.3. Bang-bang Control

It is sometimes reasonable to assume an unbounded control. However, the control u(t) is generally bounded.
Bang-bang control is a simple control strategy in which the control u(t) is modulated between two values ±V (V ≥ 0).
For instance, consider the time optimal control problem for iU̇(t) = 1

2
[
σz + u(t)σx

]
U(t) to drive the system from |0⟩

to |ψd⟩ with bounded control |u (t)| ≤ V . From the Liouville equation (4) for the evolution of the density matrix ρ(t),
with ρ = 1

2 (I + r.σ), in which I indicates the identical matrix, r =
(
tr {ρσx} , tr

{
ρσy

}
, tr {ρσz}

)
the Bloch vector, and
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σ =
(
σx, σy, σz

)
the Pauli matrices, we have

ṙt =

ẋt

ẏt

żt

 =
0 −1 0
1 0 −u (t)
0 u (t) 0


xt

yt

zt

 (29)

with r0 = (0, 0, 1) corresponding to |0⟩. From the performance measure J (u) =
t∫

0
dτ of time optimal control

problem and Lagrange multiplier vector, the Hamiltonian function would be H ≡ 1 + λT (t).ṙt. According to the
PMP, [100], a necessary condition for optimal control to minimize the functional J(u) is H (r∗ (t) , u∗ (t) , λ∗ (t) , t) ≤
H (r∗ (t) , u (t) , λ∗ (t) , t), so the optimal control should be chosen as u∗ (t) = −V sgn (λ.3 (t) yt − λ2. (t) zt), [96, 14, 15].
In addition to the discussed time optimal problem, bang-bang control has also been used for minimal switches, [101].

4.4. Incoherent Control

It is sometimes assumed that the control directly influence the system dynamics. However, there are several
physical situations, such as a finite dimensional open quantum system with Markovian dynamics, [102], where it may
not be possible or very hard to directly control the state of a system S , but it is easy to manipulate the state of an
ancilla system P. Then, the state of S can be modified via interaction with P to control the quantum system. The
ancilla system can be, for instance, a probe, which is entangled with the quantum system. The information acquisition
about either the interaction, or the input state can be done by measuring the expectation values of the probe, [103].

This kind of incoherent control does not have any effects on the Hamiltonian of S , but it is performed through
control on the probe and interaction of the probe with the system, [104]. In an environment-mediated control protocol,
under assumption that the dynamics of S and P are only due to the interaction with environment, it has been proved that
the induced correlations between S and P are rich enough to allow total control of S by means of P, [105]. Moreover,
for large quantum systems, the control process may be done by acting on a small subsystem allowing to transfer arbi-
trary and unknown quantum states for downloading and uploading accesses useful for the control of quantum RAM
and hard drives, [106]. Incoherent resources may also be introduced through quantum measurements. measurement
and dissipation provide a unique quantum resource, owing to the stochastic back-action that necessarily accompanies
acquisition of information. For instance, it is possible to reach a desirable quantum state with combinations of free
quantum evolution and quantum measurement, [107]. In the Strocchi map phase-space, undisturbed time-evolution
is a smooth Hamiltonian dynamics, while measurements correspond to jumps in the phase-space. When the Stroc-
chi map is used to describe quantum evolution of the N-level system (1), the phase-space has dimension 2N with
coordinates (qk, pk). The set of required transformations to ensure controllability is the U(N) subgroup of S O(2N)
corresponding to the real linear canonical transformations, that also preserve the form G (ψ′, ψ) = 1

2
∑
k

(
q′kqk + p′k pk

)
.

Take A = {H0,H1, . . . ,Hr}LA a proper subalgebra of u(N). Then, S N−1
C is a fibre space with the orbits of G(A) as

fibres and U(N)/G(A) as base space. Hence, a desired state |ψd⟩ can only be reached from the initial state |ψ0⟩ if they
both belong to the same fibre. The system is not purely controllable, but can be incoherently controllable in a sense
that given any |ψd⟩, there exist a family of observables M(|ψd⟩) such that measurement of one of the observables on
any |ψ0⟩ plus unitary evolution

∫
exp (iτH (τ))dτ leads to |ψd⟩ if G(A) is either O(N) or S p( 1

2 N), [107]. Moreover,
measurement-based incoherent control extracts entropy from a system that can be used for detection and correction
of errors or imperfections. Measurement-only manipulation has been demonstrated using a fixed measurement basis.
Such capability is an additional degree of freedom for measurement-based protocols, including state manipulation,
[108, 109, 110], rapid state purification, [111], measurement-based quantum computation, [112] and quantum Zeno
dynamics, [113, 114].

5. Closed-loop Learning Control

Closed-loop learning control, [35], (also referred to as adaptive feedback control) is the approach of exploring a
quantum control landscape for seeking the optimal control strategy where the objective function reaches its maximum
or minimum, [115]. The control objective is typically formulated as an optimal control problem by transforming the

DOI: 10.2147/exr
Available online at journals.aijr.org

https://journals.aijr.org/index.php


Quantum Control Modelling, Methods, and Applications

88

Dehaghani et al., Extsv. Rev.; Vol. 2, Issue 1, pp: 75-126, 2022

problem into that of optimizing a functional of the quantum states, control inputs, control time, and, possibly, other
variables of interest. In the learning procedure, an optimal control problem is resolved by iterations. In the first stage,
the external control (for instance a shaped laser pulse) is applied to the system under control (for instance an ensemble
of molecules), and the result is observed. Then, the signal is recognized and fed back to the learning process to
suggest a better control input according to the privious experiments. Next, the algorithm evaluates each control based
on its measured outcome with respect to a predefined control goal, and looks through the space of available controls
to proceed with an optimal solution, [36]. The method has been especially successful in controlling the laboratory
quantum phenomena, [11, 36], where it is hard to directly design optimal control strategy.

5.1. Gradient-based Learning Methods

In order to achieve scalable quantum computing technologies, gradient-based optimal control algorithms, such as
GRAPE, have been widely utilized especially for the purpose of gate implementation. These methods can normally
present good performance for solving optimal control problems when the model of controlled system is known, and
the dynamics can be equivalently (or approximately) expressed through a closed quantum system, [116]. This has
also been analysed by quantum control landscape theory, [117]. Despite the fact that the performance of gradient
algorithms is often hindered by deterministic or random errors in the system model and control electronics, these
algorithms have been good candidates to numerically find optimal fields. However, by means of the fundamental
idea of gradient-based learning control, some variants have been developed for a variety of requirements in quan-
tum optimal control. For instance, the data-driven gradient optimization algorithm (d-GRAPE) is able to correct all
deterministic gate errors, with a mild efficiency loss, by jointly learning from a design model and the experimental
data from quantum tomography, [118]. A gradient-based frequency domain quantum optimal control method has
been proposed to optimize time domain ultrafast laser pulses subject to multiple internal limitations as well as ex-
ternal constraints, [119]. As mentioned before, the objective of quantum control is the manipulation of small scale
dynamics phenomena. Hence, it is important to understand the dynamical control within a family of related quantum
systems. Concerning this, diffeomorphic modulation under observable-response-preserving homotopy search algo-
rithm, called D-MORPH, has been implemented through a well-developed gradient-based procedure, [120]. Consider
the Hamiltonian H (s, t) = H0 (s) − µ (s) E (s, t), where H0 (s) indicates the free Hamiltonian, µ (s) is the dipole mo-
ment operator, and E (s, t) is the externally applied laser field. The evolution of state |ψ (s, t)⟩ is prescribed by the
Schrödinger model (1) with the initial condition |ψ (s, 0)⟩ = |ψ0⟩. The objective is taking H (s, t) along a diffeomor-
phic path of Hamiltonians, parametrized by s, and identify the associated progression of the electric field E(s, t) such
that ⟨O (s)⟩T = ⟨ψ (s,T ) |O|ψ (s,T )⟩ = ⟨O (0)⟩T for some particular target observable operator O. Achieving this goal
corresponds to find the solutions E(s, t), to the nonlinear equation F(s) =

〈
O

([
E (s, t) ,H0 (s) , µ (s)

]
,T

)〉
− CT = 0.

However, this equation cannot be solved explicitly because it is highly nonlinear in E(s, t). Local search techniques
like the quasi-Newton and conjugate gradient methods, as usually invoked in OCT calculations, require repetitive,
separate solutions for different s values and, as a result, yield little insight on how the laser fields are related while
traversing a curve in Hamiltonian space. Therefore, a path-following morphing method capable of finding multiple
solutions is adapted in [120]. Each solution is associated to a homotopy path, [121], along which the function F(s) is

identically zero. Each homotopy path can be computed by integrating the differential equation
dF (s)

ds
=

d⟨O (s)⟩T
ds

= 0

over s starting from ⟨O (s = 0)⟩T = CT and in conjunction with Schrödinger equation (1).

5.2. Stochastic Searching Methods

Despite the success of gradient algorithm for finding optimal controls numerically, it is sometimes hard to acquire
the gradient information or there may be local optima in complex quantum control problems. In these cases, it is a good
idea to use stochastic search algorithms. These methods have also been used in the concept of experimental adaptive
feedback control (AFC), [36]. The large class of evolutionary algorithms includes simulated annealing, [122], ant-
colony systems, [123], memetic algorithms space, [124], Differential evolution (DE), [31, 125, 126], particle swarm
optimization (PSO), [127], Genetic algorithm (GA), [35, 128, 30, 129], and etc. However, amongst the many methods
proposed, the three that are very similar and popular are the GA, PSO, and DE. Although GA is a commonly used
algorithm, PSO and DE algorithms have attracted more attention especially for continuous optimization problems.
The promising nature of PSO and DE has been shown in many studies showing the superiority of DE and PSO
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over other evolutionary algorithms, [130, 131, 132]. In evolutionary computation methods, crossover, mutation and
selection operations are iteratively implemented to search for optimal controls in a parameter space, [116].

In GA, parent chromosomes go through three steps, including selection, crossover, and mutation to generate a new
generation (offspring) of chromosomes, [131]. GA methods have been applied to various quantum control problems.
For instance, a methodology for teaching laser pulse sequences to excite specified molecular states has been simulated
through GA, where the GA code runs on the controlling computer, supplying pulse sequences to the laser and receiving
some observable function of the molecular state from the measurement device. Over several generations, the system
as a whole will seek to optimize the fields, [35]. In [30], instead of optimizing the electric field by optimal control
theory, the transmittance and phase shift of conventional pulse shapers were optimized in the frequency domain by a
genetic algorithm to optimize the pulse shape for rovibrational wave-packet manipulation. Control and optimization
prospects in the frequency domain are also studied theoretically via GA and shaping Fourier-limited pulses, [123].
Moreover, GA has also been used for the optimal laser control of molecular orientation, [124].

In PSO, the particle evolves according to a Langevin equation that includes a random kick, an attractive force to
its previous best fitness, and a force pulling to the particle to the fittest particle in its neighbourhood. Neighbourhoods
overlap such that they do not partition into distinct sets, [131]. PSO, [127], has similarities with the genetic algorithm
since it also begins with a random population and searches for optima by updating the population. However, PSO
has no evolution operators such as the crossover and mutation. Comparing with GA, PSO’s advantages lies on its
easy implementation and few parameters to adjust. In the quantum particle swarm optimization (QPSO) algorithm,
a particle is defined based on the qubit, [133]. This algorithm is a global-convergence-guaranteed and has a better
search ability than the original PSO. However, Diversity-Controlled QPSO (DCQPSO) is a more efficient proposed
method of controlling the diversity for enabling particles to escape the sub-optima more easily and has been proved
to outperform the PSO and QPSO, [134]. In DCQPSO a threshold value is set for population’s diversity measure to
prevent premature convergence and therefore enhance the overall performance of the QPSO.

In DE, each chromosome breeds with three other randomly chosen chromosomes from the same generation to
produce a daughter, and the fittest of the original vs the bred daughter survives to the next generation. In each genera-
tion, the difference between two randomly chosen target vectors is weighted, then added to a third randomly selected
target vector to generate the new set of vectors called donors. This quantity determines the DE step size for exploring
the control landscape. Donor vector elements are incorporated into target vectors to generate trial vectors, and the
fittest of the target and trial vectors survive to the next generation, [131]. DE, [31, 125, 126, 135], is a simple but
competitive algorithm for real-parameter optimization problems with various variants and applications have appeared
in [136, 137]. The mutation strategy is crucial for the efficiency of DE. A direction averaged Differential Evolution
(daDE) algorithm has been applied to the tasks of quantum state preparation and quantum gate implementation re-
sulting in several remarkable features including simplicity and robustness, [138]. A subspace-selective self-adaptive
differential evolution (SUSSADE) algorithm has been proposed to achieve a high-fidelity single-shot Toffoli gate,
[139], and single-shot three-qubit gates, [140]. To enhance the learning performance, an improved DE algorithm
with equally-mixed strategies in the training step of the control design has been introduced for open quantum sys-
tems. Numerical results confirm the effectiveness of the proposed equally-mixed strategies DE (EMSDE) algorithm
regarding the control design for open quantum systems with uncertainties, [125]. In comparative studied amongst sev-
eral promising evolution algorithms, it has been found that DE usually outperformed GA and PSO for hard quantum
control problems, [131].

5.3. Reinforcement Learning Methods
Reinforcement learning (RL), [33], is an active area in machine learning used to understand and automate goal-

directed learning and decision-making. Related algorithms and techniques have been used in a variety of applications
ranging from artificial intelligence, particularly in robotics, [141], to solve complex problems with incomplete infor-
mation by using Grey RL (GRL), [142], and the control of nonlinear systems, [143]. Although RL algorithms feature
high performance, practical applications may face problems in achieving a good trade off between exploration and
exploitation, and also in the speed of learning. Many methods have been proposed to tackle these problems. For
instance, temporal abstraction, [144], and decomposition, [145], methods have been explored to address these issues.

Moreover, several learning paradigms has been combined to optimize RL. For instance, regarding the representa-
tion and generalisation of continuous action spaces in RL problems, a model has been proposed for representation and
generalization in model-less RL based on the self-organising map (SOM) of Kohonen, [146], and Q-learning, [147],
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which allows either the one-to-one, many-to-one or one-to-many structure of the desired state–action mapping to be
captured [148]. However, the model possessed limitations including issues pertaining to scalability. An adaptation of
Watkins’ Q-learning, [149], for fuzzy inference systems where both the actions and the Q-functions are inferred from
fuzzy rules has been proposed and compared effectively with genetic algorithm, [129], on the cart-centering problem
[150]. A fuzzy reinforcement learning (FRL) scheme based on the principles of sliding-mode control and fuzzy logic
has been proposed using only immediate reward, [151]. A dynamic fuzzy Q-learning method (DFQL), capable of
generating and tuning fuzzy rules, has been presented in [152]. DFQL generalizes the continuous input space with
fuzzy rules. In addition, a fuzzy RL algorithm for optimal decision making in highly stochastic problems with long
renewal periods and long-lasting memory of actions that have very large state and action spaces has been proposed
named ACFRL-2, [153]. Moreover, many other specific improvements are also implemented to improve RL methods,
[141, 154, 155]. Rapid development of quantum information processing and computation led to an approach to speed
up learning process, [156], in a sense that quantum computation can accelerate the solution of classical problems
and even solve the difficult problems unable to be solved by classical algorithms. Shor’s factoring algorithm, [157],
provides an exponential speedup for factoring large integers into prime numbers, and its experimental demonstration
has been realized using nuclear magnetic resonance (NMR), [158]. Besides, Grover’s searching algorithm, [159], can
achieve a square speedup over classical algorithms in unsorted database searching and has been experimentally imple-
mented through quantum optics, [160], and NMR, [161]. Some methods have also been proposed to connect machine
learning and quantum computing. For instance, quantum-inspired evolutionary algorithms have been proposed to
improve the existing evolutionary algorithms, [162]. Moreover, quantum computation has been used for paralleliza-
tion of a fuzzy-logic control algorithm to quicken the fuzzy inference, [163]. A quantum optimization algorithm for
combinatorial optimization using the cost structure of the search states has been proposed, and its behaviour has been
illustrated for over constrained satisfiability (SAT) and asymmetric travelling salesman problems (ATSP), [164]. In
addition, quantum search technique has been used to stochastic planning, [165].

The concept of quantum reinforcement learning (QRL) has been suggested based on quantum computing concepts
aiming at improving the trade-off between exploration and exploitation and also speed-up learning. A framework of
value-updating algorithm has been introduced inspired by state superposition principle and quantum parallelism. The
state {si} (action {ai}) in traditional RL is looked upon as the eigenstate {|si⟩} (eigen action {|ai⟩}) in QRL, the (state,
action) pair set is represented by the quantum superposition state, and the eigenstate (eigen action) is obtained by
randomly observing the simulated quantum state according to the collapse postulate of quantum measurement. The
effectiveness and superiority of the QRL algorithm has been shown for complex problems, [34].

In the light of the existing difficulties in action selection, a lot of research has been developed being a method based
on quantum computation proposed. The action {ai} represents the possible operation (or control) that can accomplish
the state transition between two states. The state {si} can represent

∣∣∣ϕli
〉

and the action {ai} represent the control
function that can drive

∣∣∣ϕli
〉

to
∣∣∣ϕli+1

〉
. A quantum-inspired reinforcement learning (QiRL) algorithm is proposed for

navigation control of autonomous mobile robots, [166]. It has also been shown that the performance of cutting-edge
RL techniques is comparable to optimal control methods in the task of finding short, high-fidelity driving protocol
from an initial to a desired state in non-integrable many body quantum systems of interacting qubits, [167]. In [168],
simultaneously optimization of speed and fidelity of quantum computation against both leakage and stochastic control
errors have been done through deep reinforcement learning. A universal control cost function optimization (UFO)
framework has been presented. The UFO cost function is used as a reward for a continuous variable policy-gradient
RL agent trained by trusted region policy optimization to find highest-reward/minimum cost analogue controls for
a variety of two-qubit unitary gates. A network-based agent in RL can discover complete quantum-error-correction
strategies, protecting a collection of qubits against noise. This has been shown by utilizing two-stage learning with
teacher and student networks and a reward quantifying the capability to recover the quantum information stored in
a quantum system. The strategies of quantum-error-correction require feedback adapted to measurement outcome,
[169].

5.3.1. Reinforcement Learning and Exploration Strategy
Standard RL framework is based on discrete-time, finite Markov decision processes (MDPs) by assuming that

state S and action Asn can be organized into discrete values, [33]. At a certain step, the agent observes the state of the
environment (inside and outside of the agent) S t and, then, chooses an action at. After executing the action, the agent
receives a reward rt + 1 reflecting how good that action is (in a short-term sense). The goal of reinforcement learning
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is to learn a mapping from states to actions, i.e., the agent is to learn a policy π : S × ∪i∈S A(i) → [0, 1], so that the
expected sum of discounted reward of each state will be maximized.

Vπ
(s) = E

{
rt+1 + γrt+2 + γ

2rt+3 + · · · |st = s, π
}
= E

[
rt+1 + γVπ

(st+1) |st = s, π
]
=

∑
a∈As

π (s, a)

ra
s + γ

∑
s′

pa
ss′V

π
(s′)

 (30)

in which γ ∈ [0, 1) is discounted factor, π (s, a) is the probability of selecting action a according to state s under
policy π, pa

ss′ = Pr {st+1 = s′ |st = s, at = a } is the probability for state transition, and ra
s = E {rt+1 |st = s, at = a } is the

expected one-step reward. Then, the optimal state-value function is

V∗(s) = max
a∈As

ra
s + γ

∑
s′

pa
ss′V

∗
(s′)


π∗ = arg max

π
Vπ

(s′),∀s ∈ S ·
(31)

The equation of V∗(s) is also called Bellman equation of V∗ in dynamic programming. Note that the V function states
what the expected overall value (not reward) of a state s under the policy π is, while the Q function states what the
value of a state s and an action a under the policy π is. There are similar value functions and Bellman equations,
where Qπ

(s,a) stands for the value of taking action a in state s under policy π, [170],

Qπ
(s,a) = E

{
rt+1 + γrt+2 + γ

2rt+3 + · · · |st = s, at = a, π
}
= ra

s + γ
∑

s′
pa

ss′V
π (s′) = ra

s + γ
∑

s′
pa

ss′

∑
a′
π
(
s′, a′

)
Qπ

(s′,a′)

Q∗(s,a) = max
π

Q(s,a) = ra
s + γ

∑
s′

pa
ss′max

a′
Q∗(s′,a′)·

(32)

5.3.2. Quantum Reinforcement Learning
Similar to traditional RL, a QRL system can also be identified for the three main sub elements, including a policy,

a reward function, and a model of the environment (maybe not explicit). However, QRL algorithms are remarkably
different from all those traditional RL algorithms in some intrinsic aspects, such as representation, policy, parallelism,
and updating operation. Let Ns and Na be the number of states and actions, then choose m and n in such a way that
Ns ≤ 2m ≤ 2Ns and Na ≤ 2n ≤ 2Na. These inequalities guarantee that every states and actions in traditional RL
have corresponding representation with eigenstates and eigenactions in QRL. Moreover, m and n qubits are used to
demonstrate eigenstate set S = {|si⟩} and eigenaction set A = {|ai⟩}, respectively. Hence, we can express

∣∣∣s(Ns)
〉
=

Ns∑
i=1

Ci |si⟩

∣∣∣s(m)
〉
=

m︷  ︸︸  ︷
11, ..., 1∑
s=00,...,0

Cs |s⟩,

(33)

and ∣∣∣a(Na)
si

〉
=

Na∑
i=1

C j

∣∣∣a j

〉

∣∣∣a(n)
s

〉
=

n︷  ︸︸  ︷
11, ..., 1∑
a=00,...,0

Ca |a⟩·

(34)
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In QRL, the agent is also to learn a policy π : S × ∪i∈S A(i) → [0, 1], which will maximize the expected sum of
discounted reward of each state. That is to say, the mapping from states to actions is π : S → A, and

f (s) =
∣∣∣a(n)

s

〉
=

n︷  ︸︸  ︷
11, ..., 1∑
a=00,...,0

Ca |a⟩ (35)

where probability amplitude Ca satisfies

n︷  ︸︸  ︷
11, ..., 1∑
a=00,...,0

|Ca|
2 = 1. According to quantum parallelism, a certain unitary trans-

formation U on the qubits can be implemented. Suppose we have such an operation which can simultaneously process
these 2m states with the TD(0) value-updating rule (??). It is like parallel value updating of traditional RL over all
states. However, it provides an exponential-scale computation space in the m-qubit linear physical space and can
speed up the solutions of related functions. In QRL, action selection is executed by measuring action

∣∣∣a(n)
s

〉
related to

certain state |s⟩, which will collapse to |a⟩ with probability |Ca|
2. As the action

∣∣∣a(n)
s

〉
is the superposition 2n possible

eigenactions, finding out |a⟩ usually entails interacting with changing its probability amplitude for a quantum system.
The updating of probability amplitude is based on the Grover iteration, [171]. To construct the Grover iteration, the
two reflections

Ua = I − 2 |a⟩ ⟨a|

Ua(n)
0
= H⊗n (2 |0⟩ ⟨0| − I) H⊗n = 2

∣∣∣a(n)
0

〉 〈
a(n)

0

∣∣∣ − I
(36)

are combined. One Grover iteration is the unitary transformation UGrov = Ua(n)
0

Ua. The procedural form of a standard
QRL algorithm is, [34],

• Initialize
∣∣∣s(m)

〉
=

11,...,1∑
s=00,...,0

Cs |s⟩, f (s) =
∣∣∣a(n)

s

〉
=

11,...,1∑
a=00,...,0

Ca |a⟩ and V(s) arbitrarily

• Repeat (for each episode):

For all states |s⟩ in
∣∣∣s(m)

〉
=

11,...,1∑
s=00,...,0

Cs |s⟩;

Observe f (s) =
∣∣∣a(n)

s

〉
and get |a⟩;

Take action |a⟩, observe next state |s′⟩, reward r

(a) Update state value
V (s)← V (s) + α

(
r + γV

(
s′
)
− V (s)

)
(b) Update probability amplitudes;

Repeat UGrov for L times

UGrov

∣∣∣a(n)
s

〉
= Ua(n)

0
Ua

∣∣∣a(n)
s

〉
Until for all states |∆V(s)| ≤ ε

QRL achieves a good tradeoff between exploration and exploitation and can also speedup learning, [34].

5.3.3. Single-particle and Many-body Quantum System Manipulation via Q-learning
It has been shown that the performance of RL algorithms is comparable to that of optimal control methods in

the task of finding short, high-fidelity protocol driving the state from an initial value to the target in nonintegrable
many body quantum systems of interacting qubits. A modified version of Watkin’s Q-learning algorithm, [149], with
linear function approximation and eligibility traces has been used to teach the RL agent to find protocols of optimal
fidelity. To manipulate the quantum system, the computer agent constructs piecewise-constant protocols of duration
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T by choosing a drive protocol strength hx (t) at each time t = jδt, j = {0, 1, ...,T/δt}, with δt the time step size. In
order to make the agent learn, it is given a reward for every protocol it constructs — the fidelity Fh (T ) = |⟨ψ |ψ (T ) ⟩|2

for being in the target state after time T following the protocol hx (t) under unitary Schrödinger evolution (1). The
goal of the agent is to maximize the reward in a series of attempts. Deprived of any knowledge about the underlying
physical model, the agent collects information about already tried protocols based on which it constructs improved
new protocols through a sophisticated biased sampling algorithm, [167]. Since in realistic applications, access to
infinite control fields is not possible, the fields hx (t) can be restricted to some interval. The fidelity optimization is
defined as an episodic, undiscounted RL problem. Each episode takes a fixed number of steps NT = T/δt , where T
is the total protocol duration, and δt the physical (protocol) time step. The state space S = {s = (t, hx (t))} consists
of all tuples of (t, hx (t)) and corresponding magnetic field hx (t), so the RL algorithm is model-free. The action
space A = {a = δhx} consists of all jumps δhx in the protocol hx, so protocols are constructed as piecewise constant
functions, e.g., bang-bang and quasi continuous protocols. The reward space R = {r ∈ [0, 1]} is the space of all real
numbers in the interval [0, 1]. The rewards for the agent are given only at the end of each episode according to

r(t) =
{

0, i f t < T
Fh (T ) = |⟨ψ ∗ |ψ (T ) ⟩|2, i f t = T

(37)

that reflects the importance of maximizing fidelity at the final time. Another essential item to set up the RL problem
is the definition of environment with which the agent interacts in order to learn. The environment is defined as

{i∂t |ψ (t)⟩ = H(t) |ψ (t)⟩ , |ψ (0)⟩ = |ψi⟩ , |ψ∗⟩} · (38)

The Hamiltonian H [hx (t)] is used to show the time dependence of the magnetic field being constructed by the agent
during the episode via online Q-learning updates for specific single-particle and many-body examples. For instance,
a two-level system is described as

H [hx (t)] = −S z − hx (t) S x (39)

in which S a are the spin-1/2 operators, and a closed chain of L-coupled qubits is considered as

H [hx (t)] = −
L∑

j=1

[
S z

j+1S z
j + gS z

j + hx (t) S x
j

]
· (40)

By means of the suitable protocol construction algorithm, the usefulness of Q-learning to manipulate single-particle
and many-body quantum systems has been demonstrated and simulated in [167].

The balance between exploration and exploitation for learning control of quantum systems has also been addressed
in a fidelity-based probabilistic Q-learning (FPQL) approach. The fulfillment of the FPQL algorithm has been tested
for spin-1/2 and Λ-type atomic systems showing that FPQL algorithms achieve a better balance between exploration,
and exploitation, and can also keep away from local optimal policies and speedup the learning process, [172].

6. Quantum Feedback Control

In this section, we first recall a feedback design method with an open-loop control strategy, Lyapunov control,
which is specially beneficial for several complex quantum control problems. Variable structure control schemes are
also another type of closed-loop control method being able to provide an alternative quantum engineering approach
to manipulate quantum systems. Then, we review the two main categories of quantum feedback control methods,
including measurement-based feedback methods and coherent quantum feedback methods. The former involve some
kind of direct or indirect measurement on the system producing a classical output signal that is then fed to a controller
in order to regognize the control input. The latter do not need the transition to classical information. The system of
interest is dynamically entangled, and, therefore, shares its quantum information with another quantum system, which
in turn is fed to a completely quantum network, acting as a quantum controller, [89].
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6.1. Lyapunov-based Control Design

Lyapunov method has been a good strategy, especially for quantum state transformations, and provides a straight-
forward way to design control fields without measurement or feedback. The main object in quantum Lyapunov control
theory is Lyapunov function V . Several kinds of Lyapunov functions have been studied to design an open-loop control
law for quantum systems. For instance, a Lyapunov function may be selected by the distance between the actual state
|ψ⟩ and the desired state |ψd⟩, [173]. Therefore, the distance decreases continuously when the first-order derivative of
the Lyapunov function with respect to time is kept non-positive. It has several notions of distance depending on differ-
ent ways of the transition probability, [174], but Bures distance, defined as dB (|ψ1⟩ , |ψ2⟩) = min

θ

∥∥∥|ψ1⟩ − eiθ |ψ2⟩
∥∥∥,

is intuitive and represents the Euclidean distance of equivalence classes. However, by considering the inconve-
nience in conventional processing, the Lyapunov function based on the so-called Hilbert-Schmidt distance is given
by V = 1

2

(
1 − |⟨ψd |ψ⟩|

2
)
, which is used to prove stability. The problem is to find controls in feedback form that

move the initial state to a desired target state. For simplicity and by considering practical requirements, two important
assumptions are considered for the final state. First, it is an eigenstate of the unperturbed system. Second, it is not an
eigenvalue of all operators Hk. Taking into account the Schrödinger equation, and by writing ⟨ψ|ψd⟩ in terms of its
polar representation ⟨ψ|ψd⟩ = |⟨ψ|ψd⟩| ei∠⟨ψ|ψd⟩ the first-order time derivative of V is

V̇ = −
1
ℏ

r∑
k=1

uk(t). Im
[
⟨ψ|ψd⟩ ⟨ψd |Hk |ψ⟩

]
· (41)

A reliable design is to consider V̇ ≤ 0. Accordingly, the function form of uk can be written as

uk = Kk fk(Im
[
⟨ψ|ψd⟩ ⟨ψd |Hk |ψ⟩

]
) (42)

where Kk > 0 and fk : R→ R are functions such that fk(0) = 0 and xk 7→ xk fk (xk) is positive definite for xk ∈ R. Note
that when |ψ⟩ = |ψd⟩, the control uk = 0, which means the control field will disappear when the desired final state is
reached, [173]. Due to the function form of uk, it follows that V̇ ≤ 0 and the system is stable. There are several lemmas
for the conditions of asymptotic stability, based on these lemmas. If the coupled equation ⟨ψd |[H0,Hk]|ψ⟩ = 0, then
the only solution is |ψ⟩ = |ψd⟩, and the control system is asymptotically stable, [19].

As an example, let consider the spin 1/2 particle in σz representation for which the control function u(t) varies the
electromagnetic field in the y-direction. Therefore, the Schrödinger equation would be iℏ

∣∣∣ψ̇ (t)
〉
= (H0 + u1H1) |ψ (t)⟩

where H0 = σz and H1 = σy. To perform a NOT , we have to steer the state from |ψ0⟩ = |1⟩ to |ψd⟩ = |0⟩,
(the opposite transformation is symmetrical). Since K1 f1

(
Im

〈
ψd

∣∣∣σy

∣∣∣ψ (0)
〉) 〈

ψd

∣∣∣σy

∣∣∣ψ (0)
〉
, 0 is satisfied, for

t > 0,
〈
ψ (t)

∣∣∣ψ f

〉
, 0 will hold, so the control field (42) is suitable for the system, [19]. Noting that the equa-

tion ⟨1 |−2iσx|ψ⟩ = 0 only admits |ψ⟩ = |1⟩, and the system is asymptotically stable. By choosing f1 (x) = sgn (x),
one has u1 = K1sgn

{
Im

[
ei∠⟨ψ|ψd ⟩ ⟨ψd |H1|ψ⟩

]}
. Since xsgn (x) ≥ 0, the requirement of the control field is satisfied.

Moreover, the control function has the form of bang-bang control as in [94].
The Hadamard gate is amongst the basic and important gates to perform quantum algorithms, and is commonly

used for the transformation of a basis state into the superposition of basis states in quantum computation, [64]. Quan-
tum Hadamard gate has been realized by choosing a proper Lyapunov function to design control fields based on

Lyapunov stability theory, [175]. Considering the time evolution operator of the quantum system U (T ) = e
−i

T∫
0

H(t)dt/ℏ
,

(see also [176]), Hadamard gate can then be realized in two-step operations by choosing suitable control fields

U1 = e
−iσy

Tm∫
0
Ω1dt
= e−iσy.

π
4

U2 = e
−iσx

T−Tm∫
0
Ω2dt
= e−iσx.

π
2 ·

(43)

Thus U1 and U2 can be realized as long as control fields Ω1 and Ω2 satisfy
Tm∫
0
Ω1(t)dt =

π

4
and

T∫
Tm

Ω2(t)dt =
π

2
,
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respectively. There exist several control field methods where the Lyapunov is adapted to time-varying and non-
linear systems, and the control fields can ensure the stability of the controlled system. For this case, Lyapunov
method is used to design the control fields Ω1 and Ω2. For quantum system i

∣∣∣ψ̇ (t)
〉
= H̃ (φ)Ω (t) |ψ (t)⟩ with |ψ⟩ =[

x1 + ix3 x2 + ix4

]T
, the equation of the real vector x =

[
x1 x2 x3 x4

]T
is obtained as ẋ (t) = BΩ (t) x (t), in

which B =

 Im
(
H̃ (φ)

)
Re

(
H̃ (φ)

)
−Re

(
H̃ (φ)

)
Im

(
H̃ (φ)

). The Lyapunov function would be selected as V (x) = 1
2

(
x − x f

)T
P

(
x − x f

)
where P is a positive definite symmetric matrix. Therefore,

V̇ (x) =
(
x − x f

)T
PBΩ (t) x (44)

where the control field is chosen as
Ω (t) = −k

(
x − x f

)T
PBx, k > 0· (45)

Let x and x f be real vectors resulted from separating the real and imaginary parts of |ψ⟩ and
∣∣∣ψTm

〉
, respectively. Ω1

andΩ2 are therefore both obtained by (45) and can be used to realize U1 and U2, and finally the Hadamard gate, [175].
Quantum Lyapunov methods have been considerably studied and utilized. It has been found that the monotonous

increasing condition of the performance index can be achieved as long as it is given as a function of expectation
values of time-dependent observable operators, whose equation of motion is governed by the field-free Hamiltonian
or Liouvillian system, [177]. Based on the Hilbert-Schmidt distance as a Lyapunov function, a control design for
tracking natural trajectories of generic quantum states has been studied, [38, 178]. In fact, it is expected that any
control system trajectory could converge to a given target state. Although LaSalle invariance in the Lyapunov methods
principle ensures that any control trajectory can only converge to the invariant set, through the analysis of reference
trajectory tracking for locally designed coherent quantum controls, asymptotically approaching toward any eigenstate
has been achieved, [179]. Based on Lyapunov design, feedback control laws for quantum systems have been proposed,
which locally asymptotically stabilize any desired eigenstate of the system Hamiltonian, [180]. Consider the finite
dimensional mathematical model i

∣∣∣ψ̇(t)
〉
= (H0 + H1u1(t)) |ψ(t)⟩, so the adapted Lyapunov function is V = ⟨ψ |P |ψ⟩,

PT = P. The set of critical points of the Lyapunov function under the constraint ⟨ψ |ψ⟩ = 1 is given by the normalized
eigenvectors of P. Then,

V̇ = i ⟨ψ |[H0, P]|ψ⟩ + i ⟨ψ |[H1, P]|ψ⟩ u1· (46)

Since a commutator can never be sign definite, P is chosen to commute with H0. To ensure V̇ ≤ 0, the form of control
field is selected as u = − f (i ⟨ψ |[H1, P]|ψ⟩), where f is a continuous function with f (0) = 0 and x f (x) > 0,∀x , 0.
Hence, the mathematical model is i

∣∣∣ψ̇(t)
〉
= (H0 − f (i ⟨ψ |[H1, P]|ψ⟩) H1) |ψ(t)⟩, for which the set of eigenvectors of

H0 is the largest invariant set, [180].
The control strategy based on the error is widely applied to classical control systems designed by the Lyapunov

method and may be utilied in quantum system. Therefore, the Lyapunov function would be defined based on the error
between the initial and target states, [181]. In some cases, in order to adjust the global phase without altering the
physical quantities of |ψ⟩, a new real scalar control field ω corresponding to θ̇ is added. Hence, the control system is
considered as i

∣∣∣ψ̇〉 = (H(t) + ωI) |ψ⟩, [181]. For the cases that target states are not eigenstates of the free Hamiltonian,
it is possible to formulate the control problem as reference trajectory tracking, [181, 38, 179]. Take a reference
trajectory t 7→ (|ψr (t) , ur (t) , ωr (t)⟩), a smooth function of the control system i

∣∣∣ψ̇r

〉
= (H0 + urH1 + ωr) |ψr⟩, and the

time varying function V (ψ, t) = ⟨ψ − ψr |ψ − ψr ⟩. V is positive for all t > 0 and all ψ ∈ S2n−1 and vanishes when
ψ = ψr. It is easy to conclude that V is a control Lyapunov function when |ψ⟩ satisfies the control system equation.
The first-order time derivative of V is

V̇ = 2 (u − ur) Im (⟨H1ψ (t) |ψr ⟩) + 2 (ω − ωr) Im (⟨ψ (t) |ψr ⟩) · (47)

Hence, the simple form of control laws to ensure V̇ ≤ 0 can be selected as

u = ur (t) − a Im (⟨H1ψ (t) |ψr (t) ⟩)

ω = ωr (t) − b Im (⟨ψ (t) |ψr (t) ⟩)
(48)
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where a and b are considered positive parameters, [181]. Furthermore, several techniques based on Lyapunov have
been formulated utilizing density operators for the control of a spin ensemble, [182, 183]. The Lyapunov-based
feedback design does not require spins that are selectively addressable. This method makes it possible to attain
control inputs also for complicated tasks such as suppressing undesired couplings in identical spin systems, [183].

6.2. Variable Structure Control
Variable structure control has been exploited as a quantum engineering approach to manipulate quantum systems,

[40, 41, 42]. The method comes up with improved properties through the change of the controller structure con-
forming to the defined switching logic. For instance, a variable structure control scheme that can accomplish global
control design has been proposed for a class of quantum systems wavefunction uncontrollable under the action of
an individual controller with a fixed structure, [41]. The finite dimensional quantum control model presented in (12)
can be considered as the beginning stage for controllability analysis, [75], in which A and B are typically assumed
diagonal and Hermitian, respectively, and do not commute. B matrices with different structure indicate different con-
troller structures with the matrix Bu = u (t) B corresponding to a controller. In [41], a specific five-level system with
A = diag(1, 1.2, 1.3, 2, 2.15) is considered, and two quantum control models are defined as, [184],Model I : iℏĊ (t) =

(
A + Bu

1

)
C (t)

Model II : iℏĊ (t) =
(
A + Bu

2

)
C (t)

(49)

with corresponding controllers

Controller I: Bu
1 =


0 0 0 u1 (t) u1 (t)
0 0 0 0 0
0 0 0 0 0

u1 (t) 0 0 0 u1 (t)
u1 (t) 0 0 u1 (t) 0



Controller II: Bu
2 =



0 0 u2 (t) 0 0
0 0 0 u2 (t) u2 (t)

u2 (t) 0 0 0 0
0 u2 (t) 0 0 u2 (t)
0 u2 (t) 0 u2 (t) 0


The two associated graphs G(V, E) (13) of models I and II are not connected. Therefore, the mentioned five-level
system is wavefunction uncontrollable under the action of either controller I or II, meaning that both models are
wavefunction uncontrollable. However, switching between the two controllers can make the system wavefunction
controllable provided that the controller can be arbitrarily switched between controller I and controller II, [41]. As a
result, the presented strategy makes a wavefunction uncontrollable system to be wavefunction controllable by involv-
ing a switching logic. However, in the bang bang control, controllers with different control values V and −V can be
employed as having the same controller structure. If the controller Bu can be arbitrary switched between controllers
Bu

m and Bu
n (m , n, 1 ≤ m, n ≤ M), the system

iℏĊ (t) = (A + Bu) C (t)

C (t = 0) = C0, Bu ∈
{
Bu

1, . . . , B
u
M

} (50)

is wavefunction controllable. It is worth mentioning that Lyapunov methods may be applicable to implement practical
methods for designing the switching logic.

6.3. Quantum measurement-based Feedback Control
During the measurement-based feedback control (MFC) procedure, the system is measured in order to obtain

information of the system state and, then, design the control law according to the estimation of the state. In classical
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feedback control, the information of the system can simply be obtained without disturbance, while the quantum
states collapse under the measurement procedure, [115]. As an example, let consider feedback process based on the
outcomes of a von Neumann measurement. Each result of this measurement projects the system into the set of basis
states. For each state, it is possible to perform a different unitary operation on the system. This type of measurement-
based feedback have several important applications, especially in quantum error correction, [185]. Another example
of quantum feedback is Maxwell’s famous demon, [186], which can be usefully analysed based on von Neumann
measurements, [187].

6.3.1. Continuous Quantum measurements
One possible technique to represent continuous measurements, [188, 189], is through the quantum trajectory ap-

proach, [190, 191, 192, 193]. In general, the evolution of a system state, possibly, undergoing stochastic processes,
e.g. quantum jumps, is known as a quantum trajectory, [190]. This approach describes the evolution of a conditional
state when a measurement record is given. Even if classical noise does not appear, such a trajectory pursues a stochas-
tic path in time, where the randomness is a result of quantum uncertainty. These stochastic trajectories are either
diffusive or jump-like in nature. The former typically appears when the observable being measured is only weakly
coupled to the detector while the latter occurs when the observer’s knowledge of the system state experiences a large
sudden change, [191]. In addition to this approach, it is useful to estimate an unknown dynamical parameter through
continuously monitoring an open quantum system. Since continuous observations of open quantum systems are natu-
rally noisy, quantum filtering theory is useful to extract information, [194]. Quantum filtering theory is a key element
for several quantum feedback control strategies, [195, 196], such as risk-sensitive optimal control, [195]. In quantum
filtering, the measurement output is fed to a classical system in order to produce an estimated state of the measured
quantum system. Therefore, a classical system is used to imitate a quantum system. In fact, quantum filtering acts as
a bridge between a quantum system and a classical controller, [187]. In the following we will see quantum trajectories
and quantum filtering approaches in more detail.

6.3.1.1 Quantum Trajectories

One way to find a quantum trajectory for a given measurement record has been the expression of quantum master
equation as an average over a stochastic evolution, referred to as unravelling, for a pure quantum state, [197], which
is equivalent to utilize Monte Carlo technique for simulating the master equation. For a master equation, there exists
more than one stochastic equations that will unravel it, e.g., stochastic equations driven either by Wiener noise, [188],
or by a point process (e.g. Poisson process), [187, 197].

(i) Quantum jumps: Let consider the unconditioned measurement-induced master equation form of (7) as

ρ̇ = −i
[
H, ρ

]
+

1
2

∑
µ

γµ
(
2cµρc†µ − c†µcµρ − ρc†µcµ

)
(51)

in which c indicates the annihilation operator. The quantum continuous measurement represented in (51) can be
written via the general description of a quantum measurement, usually referred to as a Positive-Operator-Valued-
Measure (POVM), [198]. The master equation (51) driven by a point process is unraveled by the nonlinear stochastic
differential equation

d |ψc⟩ =

−iH +
1
2

∑
µ

γµ
(〈

c†µcµ
〉

(t) − c†µcµ
) |ψc⟩ dt +

∑
µ

 cµ√〈
c†µcµ

〉
(t)
− 1

 |ψc⟩ dNµ· (52)

The subscript “c” shows the state conditioned on the measurement output. For each µ, Nµ is a point process and
equals to either 1, at a set of discrete points, or 0 for the rest of the time. The stochastic Schrödinger equation (52) can
alternatively be written as a stochastic master equation for the density operator, [187],

dρc =
∑
µ

G
[
cµ

]
ρcdNµ (t) +H

−iH −
1
2

∑
µ

γµc†µcµ

 ρcdt (53)
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where G [r] ρ =
rρr†

tr
[
rρr†

] − ρ andH [r] ρ = rρ + ρr† − tr
[(

r + r†
)
ρ
]
ρ.

(ii) Quantum diffusion: Equation (51) can also be unravelled as

d |ψc⟩ = −iH |ψc⟩ dt +
∑
µ

γµ

(〈
c†µ

〉
cµ −

1
2

c†µcµ −
1
2

〈
c†µ

〉 〈
cµ

〉)
|ψc⟩ dt +

∑
µ

√
γµ

(
cµ −

〈
cµ

〉)
|ψc⟩ dWµ (54)

where dWµ indicate a set of mutually independent Wiener noises. The equivalent stochastic master equation is, [187],

dρc = −i
[
H, ρc

]
dt +

∑
µ

(
γµD

[
cµ

]
ρcdt +

√
γµH

[
cµ

]
ρcdWµ

)
(55)

whereD [c] ρ = cρc† − 1
2 c†cρ − 1

2ρc†c.
By considering the measurement strengths and efficiencies as Γl and ηl, respectively, the continuous measurement

of quantum variables Al for l = 1, . . . ,m is, [187],

dρc = −i
[
H, ρc

]
dt +

m∑
l=1

(
ΓlD [Al] ρcdt +

√
ηlΓlH [Al] ρcdWl

)
, (56)

and the measurement output is

dyl = ⟨Al⟩ dt +
1√

2ηlΓl
dWl· (57)

Continuous measurements holding Wiener noise are also referred to as weak measurement, [187]. It has been shown
that weak measurements let us control the qubit better in practice than is even theoretically possible without them,
[199]. The performance of a quantum control scheme taking advantage of weak measurement followed by feedback
control has been studied in [50], showing that it realises the optimal recovery from noise. By taking advantage of
decoherence free subspace (DFS), it has been shown that weak measurement and local feedback can be utilized for
controlling entanglement generation between two qubits, [49]. Transition from weak to strong measurements has also
been studied by non linear quantum feedback control, [200].

In order to propose a practical quantum feedback control scheme, the information acquisition of the system model
and states is required. The estimation of the system state for feedback via projective measurements on a quantum
ensemble, whose corresponding problem in classical control is well established by means of direct measurements
couple with estimation procedures, is more complicated because of quantum collapse postulate, [78]. The technique
for determining the quantum states of a system is named quantum state tomography in quantum information process-
ing, [201, 202, 203]. In fact, state tomography is the process of experimentally identifying an unknown quantum state.
For instance, if we are given only one copy of ρ, it would be impossible to characterize it. However, it is possible to
estimate ρ if we have a large number of copies of ρ. Suppose that many copies of a single qubit density operator ρ are
available. The set I/

√
2, X/

√
2, Y/

√
2, Z/

√
2, where I = σ0, X = σx = σ1, Y = σy = σ2 and Z = σz = σ3, forms an

orthonormal set of matrices with reference to the Hilbert Schmidt product. Therefore, ρ can be described as

ρ=
tr (ρ) I+tr (Xρ) X+tr (Yρ) Y+tr (Zρ) Z

2
· (58)

similarly, it is possible to estimate tr (Xρ) and tr (Yρ) in order to attain an acceptable estimate for ρ. An arbitrary
density operator ρ on n qubits can be expanded as

ρ =
∑

v

tr (σv1 ⊗ · · · ⊗ σvnρ)σv1 ⊗ · · · ⊗ σvn

2n (59)

in which the sum is over vectors v⃗ = (v1, ..., vn). By performing measurements, it is possible to estimate every term
in the sum of (58) and attain an estimation for the density matrix, [64]. Quantum state tomography is important for
quantum process tomography, [24, 64], which is the parameter identification for a quantum operation as, for instance,
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the system Hamiltonian. Quantum process tomography is a procedure to completely describe the dynamics of a
quantum system and can be utilizied to characterize the performance of quantum gates, quantum channels or noise
processes in a system. For a d-dimensional state space system, d2 pure quantum states are selected such that the
corresponding density operators |ψ1⟩ ⟨ψ1| , . . . , |ψd2⟩ ⟨ψd2 | construct a basis for the space of matrices. For each state,
the quantum system is prepared in that state and subjected to the procedure that we intend to characterize. After
the procedure has run to completion, quantum state tomography is utilized in order to determine the state output
from the process E(

∣∣∣ψ j

〉 〈
ψ j

∣∣∣). The procedure of process tomography is simplified to one-qubit operation in order
to provide explicit formulas useful for experimental contexts. The aim is to identify a set of operation elements Ei

for the quantum process E(ρ) =
∑
i

EiρE†i . For simplification, it is possible to consider an equivalent of E by means

of choosing the fixed operators E0 = I, Ẽ1 = X, Ẽ2 = −iY and Ẽ3 = Z forming a basis for the set of operators
on the state space. Once the set of operators Ei has been fixed, the chi matrix representation E (ρ) =

∑
mn

ẼmρẼ†nXmn

shows that E can be completely described by a complex number matrix X with Xmn ≡
∑
i

eime∗in. The commutation

properties of fixed operators conveniently let the X matrix to be determined via straightforward matrix multiplication.
There are 12 parameters specified by X determining an arbitrary single qubit quantum operation E. These parameters
may be measured through 4 sets of experiments. Fore instance, suppose the input states are prepared as |0⟩, |1⟩,
|+⟩ = (|0⟩ + |1⟩)

√
2, and |−⟩ = (|0⟩ + i |1⟩)

√
2. The following 4 matrices corresponding to ρ′j = E

(
ρ j

)
are determined

by using state tomography
ρ′0 = E (|0⟩ ⟨0|)

ρ′1 = E (|1⟩ ⟨1|)

ρ′2 = E (|+⟩ ⟨+|) − iE (|−⟩ ⟨−|) − (1 − i)
(
ρ′1 + ρ

′
4
)
/2

ρ′3 = E (|+⟩ ⟨+|) − iE (|−⟩ ⟨−|) − (1 + i)
(
ρ′1 + ρ

′
4
)
/2

(60)

Hence, ρ′j is known, and also E(ρ j) =
∑
k
λ jkρk, so λ jk can be determined by standard linear algebraic algorithms. We

may also write Ẽmρ jẼ
†
n =

∑
k
βmn

jk ρk, where βmn
jk are complex numbers that can be determined by standard algorithms

from linear algebra given operators Ẽm and ρ j. Matrix X is defined as Xmn =
∑
jk
κmn

jk λ jk where κ is the generalized

inverse for matrix β. Due to the particular choice of basis and representation of the set of operators, for the above-

mentioned example, matrix β can be expressed as the Kronecker product β = Λ ⊗Λ in which Λ = 1
2

[
I X
X −I

]
. Hence,

X can be expressed in terms of block matrices, [64], so

X = Λ

[
ρ′1 ρ′2
ρ′3 ρ′4

]
Λ· (61)

In addition, an attractive approach for information acquisition about a quantum operation is quantum non demo-
lition (QND) measurement, which has been developed in two versions: photon counting, and homodyne detection,
[204, 205]. QND measurement has been proposed to evade the unwanted quantum back action in measurement, i.e.,
perturbation due to measurement. Let A be an observable for the system S with system Hamiltonian HS, and the
system is measured by an apparatus R coupled to S via interaction Hamiltonian HRS for short moments. A precise
measurement of A brings the global state of S and R into |ψ⟩ ≈

∑
i
|Ai⟩S|Ri⟩R, in which |Ai⟩S, and |Ri⟩R indicate the

eigenvectors of A corresponding to the measurement results and the corresponding states of the apparatus recording
them, respectively. By denoting the Heisenberg observable model, a sequence of measurements of the observable are
said to be QND measurements if and only if

A (t) = e−itHSAe+itlHS ∀ tn and tm (62)

holds when measurements are being made. If (62) holds for any choice of tn and tm, then A is a continuous QND
variable. In the case that the condition only holds for certain discrete times, then A is stroboscopic QND variable. A

is automatically QND variable if it is conserved under free evolution, i,e.,
d
dt

A (t) = −
i
ℏ

[HS, A] = 0. An all-electrical
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QND measurement of a single electron spin in a gate-defined quantum dot has been presented in [205]. By means
of feedback control of a coupled circuit QED system, a scheme has been proposed for QND measurement of Fock
states of a nanomechanical resonator, [206]. It has been shown that it is possible to harness measurement back action
as a form of actuation in quantum control via real-time feedback performed during a QND measurement of atomic
spin-angular momentum, [207]. In addition, unconditional quantum-noise suppression in a collective spin system has
been demonstrated via feedback control based on QND measurement, [208]. Overall, it is worth mentioning that any
kind of methods for measuring a quantum system unavoidably disturbs the system.

6.3.1.2 Quantum Filtering

When making continuous measurement, if the dynamics of the quantum system is known, it is possible to derive
an equation of motion for the full knowledge of the system determined by the continuous stream of measurement
outcomes. The procedure by which the state of knowledge of a quantum system is calculated from a series of mea-
surement results is referred to as quantum filtering, [194]. The aim is to separate the output process into some part
which gives us useful information about the observable being measured and the remainder which can be discarded,
[208]. Quantum filtering has been introduced as an indispensable element in a number of quantum feedback control
schemes, e.g., [195]. There are three main ingredients required in order to develop quantum filtering, [209]:

• The concepts of classical probability and quantum mechanics should be captured in a non commutative proba-
bility framework.

• A non commutative generalization for the concept of conditional expectations should be provided.

• A non commutative analogue of stochastic calculus and quantum stochastic differential equations is needed to
provide a broad class of models for which filtering equations can be derived, [194].

The measurement of the observable A converts a quantum probability model (N , P) - where the non commutative
von Neumann algebra N is the set of all Hermitian operators on the Hilbert space of the system, and the function
P : N → C is a state onN in which C shows the complex space - to a classical probability model (Ω, F , P), where Ω
indicates a sample space that is the set of all elementary, mutually exclusive outcomes, the commutative σ-algebra F
is the set of events where each event is a subset of the set Ω, and the probability measure P is a function associating
a probability with every subset of F : (P : F → [0, 1]). Hence, the measurement output corresponds to a classical
probability model (A,P), in which

A = {X : X = f (A), f : R → C} (63)

forms a commutative algebra. In Heisenberg model, for an arbitrary system operator X (t) = V† (t) XV (t), where
V (t) is the unitary evolution operator of the total system composed of the controlled system and the input field, the
following quantum stochastic differential equation holds, [210, 211],

dX (t) = −i [X (t) ,HS] dt +
γ

2

{
L† [X (t) , L] +

[
L†, X (t)

]
L
}

dt +
√
γ
{
dBin

[
L†, X (t)

]
+ [X (t) , L] dB†in

}
(64)

in which HS is the free Hamiltonian of measured system, dBin is the increment of the quantum Wiener process, [69],
and L is one of several possible system operators. It is possible to define an output field Bout describing the filed
leaving the system after interaction as Bout (t) = V† (t) Bin (t) V (t) with the increment form as dBout = dBin +

√
γL (t).

In case that homodyne detection is performed on Bout (t), and also the phase of the local oscillator is set to zero, then,
the operator corresponding to the output of the homodyne measurement is dYout =

1
√
γ

(
dBout + dB†out

)
, satisfying

dYout =
(
L + L†

)
dt +

1
√
γ

(
dBin + dB†in

)
· (65)

Equations (64) and (65) are defined on a quantum probability space and give the dynamics of the operators that de-
scribe the measured quantum system. Quantum filtering, [194], aims to provide an estimation π(X) of the value of the
system observable X at time t given the stream of measurement results up until that time. The event set generated by the
measurement output signals up to the current time t is defined asYout = {Y (t) |Y (t) = f [Yout (τ) : 0 ≤ τ ≤ t] } in which
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f (·) is an arbitrary function. The conditional expectation of X(t) on Yout is the estimation πt (X) = P (X (t) |Yout ),
where P is the probability measure of Yout. The dynamical equation for πt (X) is called quantum filtering equation,
[194],

dπt (X) = πt [L (X)] dt +
√
γ
[
πt

(
L†X + XL

)
− πt

(
L + L†

)
πt (X)

]
dW (66)

and the corresponding output equation is

dYout = πt

(
L + L†

)
dt +

1
√
γ

dW (67)

in which dW is the increment of W(t) and satisfies the classical Ito rule (dW)2 = dt. Based on the information
extracted by the quantum measurement, the observer’s knowledge of the measured quantum system is obtained by
equations (66) and (67), defined on a classical probability space. Generally, a classical stochastic system is used to
imitate the dynamics of a quantum stochastic model in quantum filtering, [187, 194, 212]. An example is the problem
of quantum filtering for a two-level atom driven by two counter-propagating continuous-mode photons is given in
[213]. For further details on the filtering problem of many particle quantum systems refer to [214].

6.3.2. Markovian Quantum Feedback
The theory of quantum-limited feedback for the systems that are monitored continuously has been investigated in

[45]. Two approaches have been considered: One based on quantum measurement and another based on Hamiltonian
system-bath interactions. The former leads to a stochastic non-Markovian evolution for the density operator and the
latter gives rise to a non-Markovian quantum Langevin equation. It has been shown that in the limit of negligible time
delay in the feedback loop, a simple deterministic Markovian master equation is obtainable from either approaches. In
Markovian quantum feedback, time delay is ignored and a memory-less controller is designed, [215]. Therefore, the
equation that describes the resulting evolution is a Markovian master equation, [19, 45]. Measurement-based quantum
feedback aims to utilize the output signal for engineering the dynamics of the system. By denoting equation (56) and
(57) for a quantum continuous measurement of operator A, we can write the measurement and output equations

dρc = −i
[
H, ρc

]
dt + ΓAD [A] ρcdt +

√
ηΓAH [A] ρcdW (68)

dy = ⟨A⟩ dt +
1√

2ηΓA
dW (69)

By introducing ρ f as the system density operator altered by feedback control, the general form of system dynamics
becomes

dρ f = F
[
t, {dy (τ) |τ ∈ [0, t] }

]
ρc (70)

where F
[
t, {dy (τ) |τ ∈ [0, t] }

]
indicates a super operator depending on the output signal for all past times. For most

studies, quantum feedback control is presented through varying the parameters in the system Hamiltonian based on the
output signals. For instance, in case of Markovian quantum feedback, the control is applied by adding a Hamiltonian
term proportional to the measured signal dy(t)/dt generating the dynamics

dρ f =
(
exp (Kdy) − 1

)
ρc (71)

in whichK is a super operator defined byKρc = −i
[
F, ρc

]
for some Hermitian operator F. Combining equations (68)

and (71), the modified closed-loop stochastic master equation would be obtained as, [216, 187],

dρ f =
{
−i

[
H, ρ f

]
+ ΓAD [A] ρ f

}
dt − i

[
F, Aρ f + ρ f A

]
dt +

1
η
D [F] ρ f dt +H

[
√
ηA −

i
√
η

F
]
ρ f dW (72)

which results in the Wiseman-Milburn, [216, 45, 187, 217], equation by averaging over the Wiener noise, so

ρ̇ = −i
[
H, ρ

]
+ ΓAD (A) ρ − i

[
F, Aρ + ρA

]
+

1
η
D [F] ρ (73)
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in which ρ = E(ρ f ). The two last terms in equation (73) are induced by feedback. The term −i
[
F, Aρ + ρA

]
steers

the system dynamics to desired effects, while 1
η
D [F] ρ indicates decoherence effects of feedback. Equation (73) is

the simplest measurement-based quantum feedback approach and can be utilized to resolve several problems through
appropriate choices for operators A and F. This equation can also be written in the Lindblad form, [216, 45, 187],

ρ̇ = −i
[
H +

(AF + FA)
2

, ρ

]
+D [A − iF] ρ +

1 − η
η
D [F] ρ· (74)

In Markovian quantum feedback, the feedback Hamiltonian is usually chosen as a linear function of feedback signal.
For instance in [217], the feedback Hamiltonian for the Markovian feedback of the homodyne photocurrent is consid-
ered as H f b (t) = F (t) × I (t), where I (t) is the singular and of indefinite sign current from measurement. Feedback
Hamiltonian enters the system Hamiltonian to change the evolution of the system. Quantum Markovian feedback has
been used in several aspects of physical problems, such as pure state stabilization, [218], manipulating quantum entan-
glement, [219, 220], and spin squeezing [221]. In addition to pure state stabilization, the potential of output-feedback
Markovian control schemes for noiseless-subspace generation has been addressed in [222]. Especially, explicit out-
comes for the synthesis of stabilizing semigroups and noiseless subspaces in finite-dimensional Markovian systems
are attained in [222]. Moreover, it has been shown that quantum feedback control can be utilized as a quantum error
correction procedure, [223]. In the case that feedback delay cannot be neglected, the feedback Hamiltonian must
include a delay parameter. The effect of the time delay is qualitatively similar to that of inefficient detection. In [224],
the problem of measurement-based feedback control for quantum systems has been studied, and the time to compute
the filter-based control input is considered through the input delay, [224]. In addition, the effects of time delay in
feedback has been investigated for the control of linear quantum systems, [225], with an emphasis on the relation
between the potentially achievable control performance and time delay.

In spite of its simplicity, Markovian quantum feedback has some limitations. Feeding back the measurement
signal at every instant of time decreases the optimal use of extracted information from measurement. Hence, the
measurement results, given in (57), should be processed via stochastic Mater equation. By knowing ρc at each time,
⟨A⟩ = tr(Aρc) is also known, so the first term of (57) does not provide any new information about the system. Hence,
the state of knowledge is modified by the second term of the equation, including noise dW. As the measurement
proceeds, ρc tends to some pure state |ψ⟩, and ⟨A⟩ tends to the true mean value Ā = ⟨ψ |A|ψ⟩, so if A is a Hermitian
observable, and |ψ⟩ is an eigenstate of both the system Hamiltonian and A, the system remains in the state |ψ⟩, under
the condition that the system is not subject to other noise sources. In this case, Ā is constant, and it is possible to
obtain an estimate of Ā of ever increasing accuracy by averaging the obtained measurement results divided by time,
[226],

YA (t) =
1
t

t∫
0

dy =
1
t

t∫
0

⟨A⟩ dt′ +
1

t
√

2ηΓA

t∫
0

dW· (75)

Hence, as the time goes to infinity, the average of the noise tends to zero so that YA(t)→ Ā. However, Ā is usually not
constant for systems to be controlled, but time averaging can still be used to estimate Ā. To do so, we should obtain
the average of signal over a time period T long enough to reduce the noise dW, and short enough to avoid tangible
changes on Ā. A weighting factor, for instance an exponential weighting function as used for the following equation,
can be included in order to cut down the dependence on the estimate of Ā on the measurement results that are too far
in the past, [187],

ỸA (t) =
1
T

t∫
t−T

exp
(
−γ f t′

) ⟨A⟩ dt′ +
1√

2ηΓA
dW

 (76)

When T ≪ 1/γ f , the estimate converges as, [187],

ỸA (t) − Ā (t) = exp
(
−γ f t

) [
ỸA (0) − Ā (0)

]
· (77)

Such filtering equations have been used in quantum feedback control in circuit QED, [227, 228]. In [227], a filtering
equation changes the state evolution to contain the back action of the measurements, while simultaneously enforcing
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consistency with the observed measurement outcomes. In the solid-state circuit QED system and based on the homo-
dyne measurement in dispersive regime, it has been shown that a homodyne-current-based feedback is able to create
and stabilize highly entangled two-qubit Bell states in the presence of moderate noisy environment, [228]. Moreover,
an extended analysis for the current based Markovian feedback leading to an improved filtered-current-based feedback
scheme has been presented. The work has also been extended to three-qubit GHZ states, [229].

6.3.3. Bayesian Quantum Feedback
In Bayesian quantum feedback (also called state-based feedback), [216], the procedure is organized in two stages.

In the first step, the system state is estimated, and the best estimations of the dynamical variables are attained continu-
ously from the measurement record. In the second step, the estimates are fed back in order to control the dynamics of
the system, [230, 231]. In [231], some arbitrary functional of the whole history of the measurement outcomes is con-
sidered to modify the evolution of the system. The resulting dynamics of the system is, thus, non-Markovian, while
the system dynamics and controller remain Markovian. This situation is similar to the one in classical control theory.
To exploit the information provided by measurement, it is necessary to process the measurement outcomes through
the stochastic master equation (56) in order to obtain ρc, which, together with the knowledge of the system dynamics,
discover the probabilities of the outcomes of any measurement on the system at any time in future. Hence, any optimal
scheme to control the system can be defined as a law to choose Hamiltonian at time t as H (t) = f (ρc (t) , t). Resources
required to solve the stochastic master equation in real time are prohibitive. However, it is possible to cut down the
computational overhead by selecting an initial estimate for ρc containing only a small number of parameters, so the
stochastic master equation reduces to a stochastic differential equation for these parameters. Hence, taking the inte-
gration of a partial differential equation is simplified to integrating a set of ordinary differential equations, which are
coupled [232]. Since the source of decoherence can be described according to the emission and absorption of phonon,
[233], the ansatz is considered to be a mixture of symmetric and antisymmetric superpositions of pure Gaussian wave-
packets, and the full ansatz for the state of a resonator is considered as ρ = P |+⟩ ⟨+|+(1 − P) |−⟩ ⟨−|, where P indicates
the mixing probability and |±⟩ = (|G+⟩ ± |G−⟩) /

√
2 (1 ± χ) in which |G±⟩ is the pair of general pure Gaussian states

with centroids (±x̄,±p̄), variances Vp and Vx, and symmetrized covariance C, and χ = Re [⟨G+ |G− ⟩] demonstrates the
overlap between the two Gaussians. Hence, the ansatz contains six parameters including x̄, p̄, Vp, Vx, C and P, [233].
For linear quantum systems, an ansatz with a small number of parameters provides an exact solution to the stochastic
master equation. By assuming that the initial states of the noise-driven linear systems are Gaussian, then the states
of the system will stay Gaussian during the evolution, and the dynamics of these variables are precisely regenerated
via those of a classical linear system driven by Gaussian noise, and subjected to continuous measurements of the
same observable. To reproduce the quantum dynamics correctly, for every continuous measurements made on the
system, one needs to add a noise source to the classical system in order to imitate Heisenberg’s uncertainty principle,
[187]. Obtaining linear dynamics requires observables with unbounded spectrum, e.g., the position q̂ of a particle
has λ(q̂) = R. Consider a system with N such position observables that all commute. In order to obtain a complete
set of such observables, it is necessary to include a canonically conjugate momentum p̂m for each particle position
q̂m, where the canonically conjugate pair obeys the commutation relation

[
q̂m, p̂m

]
= iℏ. In order to connect with the

classical theory, the complete set of observables is defined as the vector, [216],

x = (q̂1, p̂1, ..., q̂N , p̂N)T (78)

The satisfied commutation relations can be written down as

[xn, xm] = iℏΣnm (79)

where Σ indicates the (2N) × (2N) symplectic matrix, [216, 234],

Σ =
N
⊕

n=1

(
0 1
−1 0

)
= Σ∗ = −ΣT = −Σ−1· (80)
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For a system with such a phase-space structure, it is possible to define a Gaussian state determined by its mean vector
⟨x⟩ and covariance matrix C of the position and momentum variables with the (m, n)-element expressed as

Cn,m = Cm,n = ⟨∆xn∆xm + ∆xm∆xn⟩ /2· (81)

For such states, the Schrödinger–Heisenberg uncertainty relation is a necessary and sufficient condition on C to de-
scribe a valid quantum state, written as the linear matrix inequality (LMI), [235],

C + iℏΣ/2 ≥ 0· (82)

This LMI can be obtained from equations (79) and (81), because C + iℏΣ/2 =
〈
(∆x) (∆x)T

〉
. The system Hamiltonian

is quadratic in linear systems, and the dissipation operator L is linear in x, so

HS =
1
2

xT Gx − xTΣbu(t), L = lT x (83)

in which matrix G is real and symmetric, and the vectors b and l are real and complex, respectively. The second
term of H in (83) describes the applied force by feedback controller, [187]. From the quantum stochastic differential
equation (64), the dynamics of the controlled system can be defined by

dx = Axdt + budt + i
√
γΣ

[
ldB†in − l∗dBin

]
(84)

in which matrix A = Σ
[
G + Im

(
l̂∗ l̂T

)]
. From (65), the output equation is expressed as

dYout = Fxdt +
1
√
γ

(
dBin + dB†in

)
,

F = lT + l†·
(85)

After measurement, the dynamics of the linear quantum system can be completely represented through the conditional
mean and covariance. The best estimation of the system observable, πt(x), obeys the filter equation

dπt (x) = Aπt (x) dt + butdt +
[

1
ℏ

Cc,tFT + ΣT Im (l)
]
× [dYt − Fπt (x) dt] (86)

where Cc,t expresses the symmetric covariance matrix as

Cc,t = P
(
Ct

∣∣∣Yout,t

)
=

[
∆q̂2

t
1
2 (∆q̂t∆p̂t + ∆ p̂t∆q̂t)

1
2 (∆q̂t∆p̂t + ∆ p̂t∆q̂t) ∆p̂2

t

]
(87)

in which ∆q̂t = q̂t − πt (q̂) and ∆p̂t = p̂t − πt ( p̂). The covariance matrix Cc modifies in time based on the deterministic
Riccati differential equation

Ċc,t = ACc,t +Cc,tAT + D −
1
ℏ

[
Cc,tFT + ℏΣT Im (l)

]
×

[
FCc,t + Im

(
lT

)
Σ
]

Cc,0 = P
(
C0

∣∣∣Yout,0

) (88)

where ℏD = ΣRe
(
l∗lT

)
ΣT . Accordingly, the optimal filter for the linear quantum system (84) is expressed by the

closed set of equations (86) and (88), called the quantum Kalman filter, [230, 231, 210, 236]. For the linear quantum
system driven by the quantum Gaussian noise, one needs to find an optimal control input uopt which is a function of
the observations Ys(0 ≤ s ≤ t) in a way that the quadratic cost function of the system state x

J [ut] =
〈

1
2

xT
T S xT +

1
2

T∫
0

[
xT
τ Qxτ + uT

τ Ruτ
]
dτ

〉
(89)
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is optimized. The matrices M, N, and R reflect requirements for the the control strategy. Consider M ≥ 0, N ≥ 0, and
R to be a positive scalar number r. Hence, if we are restricted in the magnitude of the control input, a large value for r
must be selected. This problem can be solved via dynamical programming method, [237]. The optimal control input
is given by

uopt
t = − (2/r ) bT Ktπt (x) (90)

where the real symmetric matrix Kt is the solution to the Riccati differential equation

K̇t + KtA + AT Kt −
2
r

KtbbT Kt +
1
2

M = O,

KT = N·
(91)

It can be seen that uopt
t depends only on the solution to equations (86) and (88) at time t. A controller satisfying

this desirable property is called a separated controller. Separation theorem can be applied for linear systems with
quadratic cost functional and Gaussian noises. The values of optimal estimations are fed back, and, when computing
the feedback needed for the optimal control, one may suppose that the dynamical variables are precisely known,
[78, 230]. To see the general discussion on this, refer to [238].

In quantum LQG control problems, the optimal control is a linear feedback control law as well. However, the
controller can be either a classical, [53], or a quantum controller, [52]. In case of classical controllers, classical LQR
control results can be applied for quantum LQR problems, [23, 230, 53], while for quantum controllers, it is necessary
to add some extra constraints on coefficient matrices in order to make sure that the controller is physically realizable,
[51]. The additional constraints increase the complexity considerably, and, so numerical algorithms - e.g., a numerical
process according to an alternating projection algorithm, [52] - are required to solve such problems. Under several
reasonable assumptions (e.g., ny is even, nw ≥ ny and Fw = I + idiag (J, . . . , J), [51]), a system of the form (11) is
physically realizable if and only if:

iAΘ + iΘAT + BTwBT = 0 (92)

B
[

Iny×ny

0(nw−ny)×ny

]
= ΘCT diagNy (J) (93)

D =
[
Iny×ny 0ny×(nw−ny)

]
(94)

where Ny =
ny

2
and Tw =

1
2

(
Fw − FT

w

)
, [78, 51]. For more details on physical realizability see [51].

6.4. Quantum Coherent Feedback Control
The concept of coherent quantum feedback was first presented in [239], and it was experimentally shown through

NMR quantum information processing methods, [240]. It has also previously been presented in quantum optics as
the all-optical feedback (compared to electro-optical feedback control), [241]. In this method, the feedback con-
troller is a quantum system, and the control operations are made up of unitary transformations. This is different from
measurement-based methods, where the feedback information and feedback controller are both classical. Since co-
herent feedback control uses full quantum information, it is able to do a number of tasks that are not possible to be
performed via controllers using a classical information feedback loop, [239]. Coherent control does not involve mea-
surement, and, thus, that the measurement noise is eliminated while both the controller, and the plant are coherently
connected quantum systems. Next, the concept of direct coherent feedback control is explained for quantum state to
state transfer. In this method, a unitary interaction is used between the system and controller. Afterwards, following
the concept of all optical feedback, quantum field mediated feedback control for which the interaction is mediated
by travelling wave fields will be discussed. Then, it is demonstrated how the series and concatenation products let
describe quantum feedback control transparently.

6.4.1. Quantum State Transformation
By means of coherent feedback method, it is possible to transfer an unknown initial quantum state to a desired

target state without destroying it. For instance, consider the state transformation from an unknown initial state |ψ0⟩ =

DOI: 10.2147/exr
Available online at journals.aijr.org

https://journals.aijr.org/index.php


Quantum Control Modelling, Methods, and Applications

106

Dehaghani et al., Extsv. Rev.; Vol. 2, Issue 1, pp: 75-126, 2022

α |0⟩+β |1⟩ to the desired final state |1⟩. In case the initial state is fully unknown, the state of the qubit is considered as
the density matrix ρ = (1/2 ) |0⟩ ⟨0| + (1/2 ) |1⟩ ⟨1|. It is not possible to do this transformation via a unitary operation
on the system, since the initial state must be known in order to choose the appropriate unitary. In order to utilize a
unitary interaction for preparation of the system state in |1⟩, it is necessary to have the controller in a pure state, for
instance starting from |0⟩, then an interaction is turned on to transform the controller to the state |1⟩ provided that
the qubit under control is in state |1⟩. In order to correlate |ψ0⟩ with the controller qubit, which is considered to start
initially from the state |0⟩, we need to apply a unitary such that U (|ψ0⟩ ⊗ |0⟩) = α |0⟩ ⊗ |0⟩ + β |1⟩ ⊗ |1⟩, where the
unitary can be written as

U =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 · (95)

As seen, the controller is in state |1⟩ if and only if the qubit under control is in state |1⟩. Therefore, it is necessary to
transfer the state of controlled qubit from |0⟩ to |1⟩ only if the state of the controller is |0⟩, which can be done through
the feedback unitary

U f b = (|0⟩ ⟨1| + |1⟩ ⟨0|) ⊗ |0⟩ ⟨0| + I ⊗ |1⟩ ⟨1| · (96)

The feedback unitary may be applied to the joint two-qubit system to produce the final state and complete the feedback
procedure in a way that the controlled qubit take the state |1⟩ for any value of α and β, so

U f b (α |0⟩ ⊗ |0⟩ + β |1⟩ ⊗ |1⟩) = |1⟩ ⊗ |ψ0⟩ · (97)

As it can be seen, |ψ0⟩ is not destroyed, and the quantum information in the state of the controlled qubit at any time is
transferred to the controller. In coherent feedback method, the controller performs the similar action as a measurement
that projects the system state onto the basis {|0⟩ , |1⟩}. However, since the projection is not really performed, and the
overall procedure is coherent, the quantum information carried by the controlled qubit would not be destroyed. In
fact, the controller becomes correlated with the system in the basis {|0⟩ , |1⟩} and performs an action according to the
state of the system, [187]. Feedback control by means of quantum controllers is not stochastic. In particular, the target
state to which the quantum controller transfers the system is entangled with another quantum system. Entanglement
is a non-local quantum phenomenon that cannot be generated by classical controllers, [242]. In this method, often
termed as “direct coherent feedback”, a unitary (Hamiltonian) interaction has been employed between the system
and controller, and the Hamiltonian description of the joint system does not demonstrate a loop, but it presents an
interaction between the two systems.

6.4.2. All Optical Feedback Control
In the previous section, it was explained that a quantum controller can perform feedback even if the system

description does not require an explicit loop. However, there exists a technique to make the loop explicit for a
quantum controller where there is no measurement in a sense that the system is coupled to a travelling wave optical
field that propagates from the system to the controller and closes the loop via another travelling wave field from the
controller to the system. To do so, the two travelling wave fields must continue propagating after their interaction
with the systems. This type of coherent feedback is referred to as "field-mediated feedback". For instance, instead of
detection of the emitted light in electro-optic feedback, the light can be reflected around a loop back into the source
cavity or, more effectively, to another cavity coupled to the source cavity in some way. In [241], two optical cavities
are considered in horizontal (cavity 1), and vertical (cavity 2) states coupled directly by a nonlinear crystal. The output
beam from cavity 1 is fed through a combination of a polarization beam splitter and a Faraday rotator, and, then into
cavity 2. The combination of the polarization-sensitive beam splitters and Faraday rotator forms an optical isolator,
[243]. Therefore, the output field from cavity 1 travels in a unidirectional way to cavity 2, so such mechanism is
termed as a cascade coupling between the cavities, [241]. For such feedback scheme, cavity 1 is the system under
control, and cavity 2 is the controller, which takes the system information from the one-way field and applies feedback
through the direct coupling, [187, 241]. An optical cavity is normally described by the Hamiltonian

Htot = HS + HB + HI (98)

DOI: 10.2147/exr
Available online at journals.aijr.org

https://journals.aijr.org/index.php


Quantum Control Modelling, Methods, and Applications

107

Dehaghani et al., Extsv. Rev.; Vol. 2, Issue 1, pp: 75-126, 2022

where HS is a function of internal-mode operators only, HB indicates the internal Hamiltonian of the bath, and HI
expresses the interaction between bath and cavity field, which is taken to be linear. The behaviour of the internal
mode or modes may be either calculated by master equation or quantum Langevin equations. In [241], three kinds of
interaction Hamiltonians are considered in which c2 is the annihilation operator of the driven cavity (cavity 2), K is
an arbitrary observable of the mode on the source cavity (cavity 1), and B is an arbitrary operator:

• HI = ℏc†2c2K realized via a χ2 nonlinear crystal and can be utilized to regenerate feedback by means of photon
counting.

• HI = ℏ
(
c2 + c†2

)
K realized via a χ2 nonlinear crystal and an extra filed that may be treated classically.

• HI = ℏ
(
c2B† + c†2B

)
provides feedback with no measurement-based counterpart and is able to generate non

classical states in system mode.

Regarding the last interaction Hamiltonian, if B = iλ
(
c1 + µc†1

)
with λ ∈ R+ and µ ∈ R, then, the resulting feedback

produces squeezed states of the system mode for −1 < µ < 1. This can be realized experimentally by combining
mode conversion via a polarization rotator using a χ2 nonlinear crystal.

6.4.3. Quantum Network Modelling Methodology
In the previous section, a one-way connection was considered from the system to the controller, while the coupling

for the feedback part of the loop was not unidirectional. However, it is possible to use a cascade connection for
both so that we have a complete unidirectional loop. General and efficient methods have been recognized in order
to describe networks of quantum components and have been emerged in quantum optics, quantum computing and
information processing, [210, 64, 211, 244]. For instance, a general input-output theory for quantum dissipative
systems is developed with the possibility of relating output to input via the internal dynamics of a system, [211, 244],
such that systems can easily be connected together by setting the input of one system equal to the output of another. In
these formulations, every system is expressed by a Hamiltonian together with the operators through which it is coupled
to the input/output fields, where the fields can be coupled together by means of a beam splitter. With the concept of
quantum networks, [245], it is possible to describe this formalism to combine circuit elements to networks where
each unit is described by the parameter list G = (S , L,H) due to the parametrization of Hudson-Parthasarathy, [246],
Collett-Gardiner, [211, 244], and close relation to the standard form of Lindblad generator, that will be explained in
(101). The scattering matrix S n×n is square with operator entries such that S †S = S S † = I. The coupling vector Ln×1 is
a column vector with operator entries through which the system couples to the inputs, and H is a self adjoint operator
indicating the internal Hamiltonian of the system. These parameters specify an open quantum system coupled to field
channels with corresponding gauge processes

B(t) =


B1(t)
...

Bn(t)

 ,

Λ(t) =


B11(t) · · · B1n(t)
...

...
...

Bn1(t) · · · Bnn(t)


(99)

where the vector B(t) and the matrix Λ(t) are quantum Wiener processes and quantum Poisson processes, respectively.
The noise processes are integrals of the input fields denoted by bi (t) , (i = 1, . . . , n), which construct the vector of
inputs to the system bin (t) = [b1 (t) , · · · , bn (t)]T . Hence,

Bi (t) =
∫ t

0
bi (τ) dτ,

Bi j (t) =
∫ t

0
b†i (τ) b j (τ) dτ·

(100)
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All differentials are understood in the Ito sense, [246]. We assume that all processes are canonical, meaning that the
following non vanishing second order Ito products exist:

dB j (t) dBk(t)† = δ jkdt

dB jk (t) dBl(t)† = δkldB j(t)†

dB j (t) dBkl (t) = δ jkdBl (t)

dB jk (t) dBlm (t) = δkldB jm (t) ·

(101)

For the open quantum system G = (S , L,H) with canonical inputs, the unitary motion of the system is determined by

dV (t) = (tr
(
(S − I) dΛT

)
+ dB†L − L†S dB −

1
2

L†Ldt − iHdt)V (t) ≡ dG (t) V (t) (102)

with initial condition V(0) = I. Equation (102) demonstrates the definition of the generator dG(t). The operators
constituting the above mentioned system parametrization are supposed to be defined on an underlying Hilbert space,
referred to as the initial space. In the Heisenberg model, a system operator X (t) = V(t)†XV (t) defined on the initial
space satisfies the quantum stochastic differential equation

dX (t) =
(
LL(t) (X (t)) − i [X (t) ,H (t)]

)
dt + dB† (t) S † (t) [X (t) , L (t)]

+
[
L† (t) , X (t)

]
S (t) dB (t) + tr

((
S † (t) X (t) S (t) − X (t)

)
dΛT (t)

) (103)

in which LL(·) indicates the Liouville super operator defined by

LL (X) =
1
2

L† [X, L] +
1
2

[
L†, X

]
L =

n∑
j=1

(
1
2

L†j
[
X, L j

]
+

1
2

[
L†j , X

]
L j

)
· (104)

Since the dynamics is unitary, the commutation relations are preserved. The output fields corresponding to the inputs
B(t) and Λ(t) are given by

Bout (t) = V† (t) B (t) V (t) ,

Λout (t) = V† (t)Λ (t) V (t) ·
(105)

They are related to the system inputs through the quantum stochastic differential equations

dBout (t) = S (t) dB (t) + L (t) dt

dΛout (t) = S ∗ (t) dΛ (t) S T (t) + L∗ (t) LT (t) dt + L∗ (t) dBT (t) S T (t) + S ∗ (t) dB∗ (t) LT (t)
(106)

satisfying the quantum Ito rules for quantum stochastic calculus in (98). The dynamics of a system coupled to input
fields is given by the quantum Langevin equations, which can be solved directly for linear quantum systems. In order
to perform calculations for nonlinear quantum systems, one must transform the Heisenberg equations of the input-
output formalism to master equations (7), in which D (ρ) =

∑
j

(
L jρL†j −

1
2 L†j L jρ −

1
2ρL†j L j

)
. Although the master

equation does not depend on the scattering matrix S , this matrix plays an important role in describing the architecture
of the input channels as in (103). Moreover, it affects more complex quantum input-output systems, as it is the case
of cascade systems. In order to configure and describe a quantum network, given the systems G1 = (S 1, L1,H1) and
G2 = (S 2, L2,H2), the following two powerful tools are needed, [245]:

• Concatenation product

G1□+G2 =

((
S 1 0
0 S 2

)
,

(
L1
L2

)
,H1 + H2

)
· (107)

• Series product

G2 ◁G1 =

(
S 2S 1, L2 + S 2L1,H1 + H2 +

1
2i

L†2S 2L1 −
1
2i

L†1S †2L2

)
· (108)
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Let consider the output Bout1 , which results from interaction with the internal cavity mode a, is fed back as the input
B2. The coupling operators for the two field channels are modelled as L1 = L2 =

√
γa, where γ indicates the damping

rate. Before feedback, the cavity is expressed as

G =
(
I,

(
L1
L2

)
, 0

)
= (1, L1, 0)□+ (1, L2, 0) · (109)

In addition, the phase shift in the loop is described by the unit (S , 0, 0), where S = eiθ. Therefore, the closed-loop
system is described by

Gcl = (1, L2, 0) ◁ (S , 0, 0) ◁ (1, L1, 0) =
(
S , S L1 + L2,

1
2i

(
L∗2S L1 − L∗1S ∗L2

))
(110)

so Gcl = (S cl, Lcl,Hcl) describes the overall closed-loop feedback, in which

S cl = S ≡ eiθ

Lcl = S L1 + L2 ≡
(
1 + eiθ

) √
γa

Hcl = Im
{
L∗2S L1

}
≡ γ sin θa†a

(111)

that entails the following Heisenberg dynamical equation for the cavity mode

da = −
[
a,

(
1 + eiθ

) √
γa†

]
dB1 −

γ

2

(
1 + eiθ

) (
1 + e−iθ

)
adt − iγ sin θadt ≡ −

(
1 + eiθ

) (√
γdB1 + γadt

)
(112)

and the input/output relation is
dBout2 = eiθdB1 +

(
1 + eiθ

) √
γadt (113)

where dB1 is the input field to source cavity, and dBout2 is the output field from the controller cavity which leaves
the unidirectional feedback loop. To see more details, and also the application of quantum network methodology for
measurement-based feedback, refer to [245, 247].

6.4.4. Quantum Transfer Function Modelling Methodology
As seen, the algebraic theory behind quantum feedback networks has been expanded for open quantum dynamical

systems. However, for the particular case of linear systems with instant feedback relations, it is possible to deduce
the transfer functions in complete agreement with the mathematical rules attained in the nonlinear case. If we specify
the parametrization used in [245], such that all the systems are linear, and consider the representation of their motion
dynamics in the frequency space, then the framework for quantum transferormation function methods are obtained,
[187]. For linear quantum systems, these can be derived in series, cascade, and feedback arrangements mediated by
splitter devices, [248]. Let consider a quantum mechanical system consisting of a family of harmonic oscillators with
annihilation operators

{
a j : j = 1, · · · ,m

}
, a = (a1, · · · , am)T with the canonical commutation relations[

a j, ak

]
=

[
a†j , a

†

k

]
= 0· (114)

Since the common linear quantum network represented by G = (S , L,H) is considered, the below simplifying as-
sumptions are satisfied:

• The scattering matrix S is a matrix of numbers instead of operators, so S jk are scalars.

• The field coupling operators are linear mixtures of the annihilation operators, i.e., there exist c jk such that
L j ≡

∑
k

c jkak.

• The system Hamiltonian H is quadratic, meaning that there is w jk in a way that H =
∑
jk

a†jw jkak.
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Hence, the system parametrization can be written as G = (S ,C,Ω), where Cn×n =
(
c jk

)
and Ωn×n =

(
ω jk

)
. By

following (100) and (103), the Heisenberg-Langevin equation for the system state vector a and input-output relations
can, respectively, be simplified to

ȧ (t) = Aa (t) −C†S bin (t) (115)

bout = S bin (t) +Ca (t) (116)

in which A = − 1
2C†C − iΩ. These linear equations can now be transferred to frequency space by computing either the

Laplace or the Fourier transform, [248]. By Laplace transform, defined as the following for Re s > 0,

Ĉ (s) =
∫ ∞

0
e−stC (t) dt (117)

in which C is any of our stochastic processes, the Langevin equations can be obtained as

â (s) = −(sIm − A)−1C†S b̂in (s) + (sIm − A)−1a (118)

b̂out (s) = S b̂in (s) +Câ (s) · (119)

Therefore, we can obtain
b̂out (s) = Ξ (s) b̂in (s) + ξ (s) a (120)

in which ξ (s) = C(sIm − A)−1, and the transfer matrix function Ξ (s) is

Ξ (s) = S −C(sIm − A)−1C†S · (121)

For the single mode cavity with L =
√
γa, so C =

√
γ, H = ωa†a and S = eiϕ, the corresponding transfer function is,

[249],

Ξcavity (s) = eiϕ s + iω − γ
2

s + iω + γ
2

. (122)

The frequency space framework simplifies the modelling of time delays, and non-conservative components such as
quantum amplifiers, which can be modelled statistically by a Bogoliubov transformation, [187]. Moreover, frequency
space makes it possible to consider the transfer function of two cascaded systems as the product of their transfer
functions.

7. Robust Control

In real world, quantum systems are inevitably subjected to disturbances, uncertainties, incomplete knowledge and
unknown errors, which all can be considered as uncertainties in the control field, and field-coupling coefficient, which
affects the system behaviour. Hence, it is important to design a control field robust to disturbances, [250]. By applying
a minimax analysis, the general formulation of quantum robust optimal control problem can be calculated, and the
corresponding designed optimal control field is said to be robust to the disturbances. To attain robustness for quantum
technology, and also evolve new intuitions into complex quantum plants, it is helpful to extend theories of classical
robust control into quantum domain. For instance, the famous small gain theorem of classical control theory has been
extended for the problem of stability of quantum feedback networks, and it has been shown that quantum feedback
networks are stable if the loop gain is less than one, [251]. Moreover, some open-loop and feedback approaches such
as transfer function approach can reduce noise and lead to a certain degree of robustness, [248]. Different types of
robust control approaches, including H∞ control, [51], sliding mode control, [54], risk-sensitive control, [195, 58],
and ensembel control, [59], have been proposed and introduced to the quantum realm, that shaped the early progress
in this area.

7.1. H∞ Quantum Control
The H∞ controller synthesis problem was first formulated and solved in [51]. Later, a time-variant H∞ control

problem has been solved for a class of linear quantum systems, in which a dynamic game method was employed. The
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adopted technique acquired an uniformity between the quantum problem and a supplementary classical stochastic H∞

problem. By means of the similar methodology, the finite horizon dynamic game approach has been exploited for the
same class of quantum systems, and it has been shown that its solving procedure is similar to solving a corresponding
deterministic continuous-time problem with imperfect state measurements. From this, one can obtain the solution
to the finite horizon quantum H∞ control problem based on a pair of generalized Riccati differential equations. The
finite horizon H∞ control problem has also been extended for the case of delayed measurement, [252]. For a class of
linear quantum systems, coherent control H∞ problem has been considered in [253]. In [253], a certain approach has
been selected, providing a sufficient condition and allowing for a simple tractable solution. This approach aims to find
a physically realizable augmented controller such that an appropriate linear subsystem will be the standard optimal
controller. Consider the quantum system under control expressed by the noncommutative stochastic model, described
similar to (11) as

dx (t) = Ax (t) dt +
[
B0 B1 B2

]
×

[
dv(t)T dw(t)T du(t)T

]T

dz (t) = C1x (t) dt + D12du (t)

dy (t) = C2x (t) dt +
[
D20 D21 0ny×nu

]
×

[
dv(t)T dw(t)T du(t)T

]T

(123)

in which x(t) indicates a vector of plant variables and x (0) = x0. The input w(t) and dv(t) represent the disturbance
signal and any extra quantum noise, respectively. The control u(t) is defined as

du (t) = βu(t)dt + dũ (t) (124)

in which ũ (t) and βu(t) are the noise part, and the adapted self adjoint part of u(t), respectively. Also, dv(t) indicates
any extra noise in the plant. The vectors v(t), w̃ (t), and ũ (t) are quantum noises with semi definite Hermitian Ito
matrices Fv, Fw̃, and Fũ. The controllers are supposed to be of the form

dξ (t) = AKξ (t) dt +
[
BK1 BK

]
×

[
dvK(t)T dy(t)T

]T
, ξ (0) = ξ0

du (t) = CKξ (t) dt +
[
BK0 0nu×ny

]
×

[
dvK(t)T dy(t)T

]T (125)

in which ξ (t) =
[
ξ1 (t) , . . . , ξnK (t)

]T indicates a vector of self-adjoint controller variables. The noise vK (t) =[
vK1 (t) , . . . , vKKv (t)

]T is a vector of noncommutative Wiener processes with canonical Hermitian Ito matrix FvK .
In addition, at time t = 0, it is assumed that x(0) commutes with ξ(0). Here, the closed-loop system is attained by
identifying βu (t) = CKξ (t), and making an interconnection between (120) and (122), so that the following system is
obtained with η (t) =

[
x(t)T ξ(t)T

]T
,

dη (t) = Ãη (t) dt + B̃dw (t) + G̃dṽ (t) = Ãη (t) dt +
[
B̃ G̃

] [dw (t)
dṽ (t)

]
dz (t) = C̃η (t) dt + H̃dṽ (t) = C̃η (t) dt +

[
0 H̃

] [dw (t)
dṽ (t)

] (126)

which is of the form of (11), where

ṽ (t) =
[

v (t)
vK (t)

]
; Ã =

[
A B2CK

BKC2 AK

]
B̃ =

[
B1

BK D21

]
; G̃ =

[
B0 B2BK0

BK D20 BK1

]
C̃ =

[
C1 D12CK

]
; H̃ =

[
0 D12BK0

]
·

(127)

The H∞ controller synthesis problem aims at finding a controller (122) for a given disturbance attenuation parameter
g > 0, the system described in (123) satisfies
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t∫
0

〈
βz(s)Tβz (s) + εη(s)Tη (s)

〉
ds ≤

(
g2 − ε

) t∫
0

〈
βw(s)Tβw (s)

〉
ds + µ1 + µ2t (128)

∀t > 0, and for some ε, µ1, µ2 > 0, where βz (t) = C̃η (t). Furthermore, in order to present results on quantum H∞

control, the plant system (120) is required to satisfy extra suppositions well discussed in [51].

7.2. Quantum Sliding Mode Control

In the context of variable structure control, considered control inputs allow to switch between several control
structures. Sliding mode control is an important method in variable structure control of classical systems particularly
nonlinear ones. Since the evolution of most quantum systems is nonlinear, sliding mode control is assumed as a useful
robust control tool for some quantum phenomena, [40, 107], especially due to its robustness against uncertainties,
[40, 107, 54]. These perturbations can be modelled in the system Hamiltonian. For instance, in [54], bounded

uncertainties are modelled as H∆ =
∑
l
ϵl (t) Hl, where ϵl (t) ∈ R,

√∑
l
ϵ2

l (t) ≤ ε̄ (ϵ̄ ∈ R+) and {Hl} indicates a set of

time-independent Hamiltonian operators. To apply the idea of sliding mode control to quantum systems, one needs to
introduce a sliding mode where the quantum system has desired dynamics. A sliding mode may be introduced by a
functional of the state |ψ⟩ and system Hamiltonian H, i.e.,

S (|ψ⟩ ,H) = 0· (129)

For instance, an eigenstate
∣∣∣ϕ j

〉
of internal Hamiltonian Hint can be chosen as a sliding surface, so S (|ψ⟩ ,H) =

1 −
∣∣∣∣〈ψ ∣∣∣ϕ j

〉∣∣∣∣2. If |ψ0⟩ is in the sliding mode, it can be proved that the quantum system will preserve its state in
this surface under the action of the internal Hamiltonian only. Quantum sliding mode is a state space domain, in
which the system has some desired properties brought by eigenstates or an invariant state subspace, such as the
wave function controllable subspace, [41], or decoherence-free subspace, satisfying (129). If a quantum system
state is driven into a sliding mode, the state will be preserved in the sliding surface under the action of some class of
Hamiltonians determined by the sliding mode. In [54], quantum control algorithms have been presented by combining
various techniques, including time-optimal control, projective measurements, and quantum amplitude amplification.
Reference [56] presents a variable structure control strategy with sliding modes to control two-level quantum systems
robustly. In [56], an eigenstate is identified as a sliding mode, and the Lyapunov method and projective measurements
were combined to achieve the sliding mode control design. The results of [56] have been extended to take into account
the imapct of uncertainties during the procedure of driving the system’s state back to the sliding mode domain from
outside, [254]. A sampled-data scheme to the robust control of a single qubit has been presented in [57], where the
robustness is defined through a sliding mode domain and the control law is designed in an offline mode, and, then
used online with a single qubit having bounded uncertainties. In this work, the system Hamiltonian and the coupling
strength of the system-environment interaction are considered as two classes of uncertainties.

7.3. Quantum Risk-Sensitive Control

Risk-sensitive controllers are well-known for their robustness features against uncertainties in the model and
external disturbances, [195, 255, 256]. An adaptation in the LQG cost criterion, in which the cost criterion is an
average of an integral and is well known as a risk-neutral criterion, leads to the form of a linear exponential quadratic
gaussian (LEQG) function resulting in the close connections between robust control and risk-sensitive control. In this
average of exponential of integral problem, the cost is

JLEQG = E

exp

M−1∑
k=0

(
xT

k Pxk + uT
k Puk

)
+ exp xT

MPM xM


 (130)
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where P, Q, and PM are weighting matrices. M > 0 is a positive integer showing a finite time interval k = 0, . . . ,M.
A quantum generalization of (130) can be considered as

Jµω,0 (K) = Eω,0

M−1∏
k=0

〈
ωk, eµL(uk)

〉 〈
ωM , eµN

〉 · (131)

Here, the state of the quantum system is described by ω indicating a positive self-adjoint operator, µ > 0 is a positive
risk parameter, N is a non-negative observable, and L(u) is a cost function defined to be a non-negative observable
depending on the control u, which encodes the designer’s control objective. N is a non-negative observable defining
a cost for the final state. ωk indicates the conditional state such that if the quantum system is in state ωk at time k,
and the applied control at this time is uk, the measurement result yk+1 will be recorded, and the quantum system will
be transferred to a new state ωk+1. The probability of yk+1 is p (yk+1 |uk, ωk), in which p (y |u, ω) = ⟨Γ (u, y)ω, I⟩, and
the operator Γ (u, y) is supposed to be normalized. Hence, ωk is indicated through

ωk+1 = ΛΓ (uk, yk+1)ωk (132)

whereΛΓ (u, y)ω =
Γ (u, y)ω
p (y |u, ω)

. In order to realize an optimal controller for the risk-sensitive cost (131), it is necessary

to introduce a new state ω̂, which is in general unnormalized. To do so, one needs to utilize nonlinear operators
(observables) B, and (super) operators R, which can lead to the formulation and solution of a general class of of
multiplicative cost optimal control problems for quantum systems. Here, the value of B at ω̂ is shown by ⟨ω̂, B⟩,
extending the notation ⟨ω, B⟩ = tr [Bω]. Risk-sensitive and multiplicative cost functionals can be introduced based on
(super) operator valued costs R(u) satisfying the real multiplicative homogeneity condition

R (u) rω̂ = rR (u) ω̂ (133)

for all real numbers r, and all ω̂, u. An operator valued cost R(u) corresponding to (131) can be expressed as

R (u) ω̂ =

〈
ω̂, eµL(u)

〉
⟨ω̂, 1⟩

ω̂· (134)

Although R(u) is nonlinear, it satisfies the real multiplicative homogeneity property (133). To express the robustness
features of the risk-sensitive controller, consider the general convex duality formula, [257],

log EP

[
e f

]
= sup

Q

{
EQ

[
f
]
− RE (Q ∥P )

}
(135)

in which P and Q indicate probability distributions, and Q is absolutely continuous with respect to P. The relative
entropy is expressed as, [156],

RE (Q ∥P ) = EQ

[
log

dQ
dQ

]
· (136)

By considering µ = 1/γ2, and by applying (135), the following inequality will be obtained, being P = Pnom and
Q = Ptrue,
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γ2 log EPtrue

M−1∏
k=0

〈
ωk, eµL(uk)

〉 〈
ωM , eµN

〉
≥ EPtrue

γ2 log

M−1∏
k=0

〈
ωk, eµL(uk)

〉 〈
ωM , eµN

〉
 − γ2RE (Ptrue ∥Pnom )

= EPtrue

γ2

M−1∑
k=0

log
〈
ωk, eµL(uk)

〉
+ log

〈
ωM , eµN

〉
 − γ2RE (Ptrue ∥Pnom )

≥ EPtrue


M−1∑

k=0

⟨ωk, L (uk)⟩ + ⟨ωM ,N⟩


 − γ2RE (Ptrue ∥Pnom ) ·

(137)

Here, Γnom is considered to design K̂∗nom. Together, Γnom, and K̂∗nom define the probability distribution Pnom. Γnom

does not need to be equal to the operator for the true system Γtrue, in reality. The controller K̂∗nom is applied to the
true system, resulting in a probability distribution Ptrue, which is assumed to be absolutely continuous with respect to
Pnom. In (137), the following important bound is derived

Jrn
Ptrue

(
K̄∗nom

)
≤ γ2 log Jrs,γ2

Pnorm

(
K̂∗nom

)
+ γ2RE (Ptrue ∥Pnom ) (138)

in which Jrn
Ptrue

(
K̄∗nom

)
indicates the risk neutral cost criterion, Jω,0 (K) = EK

ω,0

(
M−1∑
i=0
⟨ωi, L (ui)⟩ + ⟨ωM ,N⟩

)
with ωi

as the solution of the system dynamics (132). The risk neutral cost is evaluated via the true system model Ptrue,
and the controller

(
K̄∗nom

)
is designed through the nominal model Pnom. Equation (138) bounds the cost by two

terms, the first term is related to the optimal risk-sensitive cost (131), and the second is a measure of the distance
between the true and nominal systems. Robustness gain parameter γ2 = 1/µ > 0 is desired to be as small as possible
to achieve maximum robustness, [195]. Overall, risk-sensitive controllers enjoy good performance and enhanced
robustness properties, which have been characterized and proved precisely. Optimal control of quantum systems
by feedback using risk-sensitive performance criteria has been well studied, [195, 255]. For instance, a quantum
risk-sensitive control problem has been systematically described, where the optimal controller is a dynamical system
driven by measurements giving the evolution of the risk-sensitive information state, and the optimal control actions
are determined via this state and dynamic programming, [255]. Moreover, in [255], a quantum risk-sensitive control
has been applied to the optimal feedback control of a two-level atom using a laser and to the problem of cooling,
and confinement of a quantum mechanical oscillator undergoing position measurement. The method to formulate and
solve the risk-sensitive optimal control problem has been illustrated in [256], where a risk-sensitive optimal control
problem for open quantum systems has been formulated. The model used in [256] for continuously monitored open
quantum systems is given by a quantum Langevin equation, and the problem is solved by means of quantum stochastic
calculus and dynamic programming. In addition, the problem of quantum risk-sensitive estimation has been studied,
and robustness properties of risk-sensitive filtering have been investigated, [58, 258]. Risk-sensitive filtering is known
as a very efficient robust estimation method for linear and nonlinear classical systems, [34, 231]. The quantum
risk-sensitive estimation problem has been studied in [58], and robustness properties of risk-sensitive filter has been
analysed based on a discrete approximation model. Guaranteed-cost filtering is another robust estimation method in
the classical theory whose quantum version has been presented in [258]. It has been shown that quantum guaranteed-
cost filtering has superior robustness properties in comparison with optimal Kalman filter, and risk-sensitive observer,
[258].

7.4. Quantum Ensemble Control

Ensemble control concerns the design of the similar control input to drive an ensemble of systems, [259]. Since
the difference in parameters are demonstrated as system uncertainties, ensemble control forms a systematic branch
of robust control. Many applications in quantum control involve controlling a large ensemble by means of the same
control input, e.g., control of inhomogeneous quantum ensembles, [260]. A canonical problem is to develop control
signals being able to steer an initial state to a target state while the ensemble depends on despersion parameters. These
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control designs can compensate for the dispersion in the dynamics of the system, so they are called compensating pulse
sequences, [59]. Designing excitations capable of compensating dispersion in the dynamics is well studied in NMR
spectroscopy with extensions to the subject of design of robust open-loop excitations called composite pulses, [261].
These pulses have been exploited in quantum information processing to correct for systematic errors in single and two-
qubit operations. For instance, the form of the composite pulse sequence has been derived in order to implement robust
single-qubit gates in a three-level system, [262]. Controllability is an essential issue in quantum ensembles control,
determining if the control function may exist or not, [59]. The notion of ensemble controllability has been studied
in quantum mechanics for quite sometime, and its mathematical aspects have been addressed, [59, 260]. Chirped
pulses for two-level systems are known to have good robustness features with regard to parameter uncertainties. Also,
the effect of chirped pulses have been analysed for a class of many-level systems via adiabatic techniques, [259].
In addition, the so-called counter intuitive pulses for STIRAP (Stimulated Raman Adiabatic Passage) procedures in
three-level quantum systems are known to realize a population transfer even if there exist certain unknown parameters,
[263]. Let consider the controlled Schrödinger equation (1) in CN , given by

i
∂

∂t
|ψ (t)⟩ = Hα (u (t)) |ψ (t)⟩ , ℏ = 1 (139)

where α is a time dependent variable belonging to a compact interval [α0, α1] ⊂ R, and u : R → U, being U an
open connected subset of Rd, is a L∞ function. Each matrix Hα (u) belongs to the set of N × N Hermitian matrices,
and its spectrum is denoted by

(
λαj (u)

)N

j=1
where j →

(
λαj (u)

)
is the non decreasing sequence of eigenvalues of

Hα (u) repeated according to their multiplicities. The orthonormal basis of associated eigenvectors is denoted as(
ϕα1 (u) , . . . , ϕαN (u)

)
. The system (139) is ensemble approximately controllable between eigenstates if for all ε > 0,

j, k ∈ {1, . . . , n} n ∈ N, and u0, u1 ∈ U such that
(
λαj (u0)

)
and

(
λαk (u1)

)
are simple for every α ∈ [α0, α1], there exists a

control u (·) : [0,T ]→ U such that for every α ∈ [α0, α1], the solution of (139) with initial condition ψα (0) = ϕαj (u0)
satisfies the condition, [263], ∥∥∥ψα (T ) − eiθϕαk (u1)

∥∥∥ < ε, θ ∈ R· (140)

A quantum ensemble can consist of a large number of single quantum systems with parameter variations, [59, 264].
In addition to the tools such as sampling-based learning control, [265], or multiple-samples and mixed-strategy differ-
ential evolution, [266], which have already been introduced to quantum ensemble control, it is possible to adapt other
methods since ensemble is naturally a notion in quantum statistics, [115].

7.5. Sequential Convex Programming

In quantum information processing, the robust optimization problem may be formulated as searching for design
variables θ ∈ Θ maximizing a measure of quantum gate performance, mainly the fidelity F ∈ [0, 1], over uncertainty
parameters δ ∈ ∆. The set ∆ can contain deterministic and random variables that may impact any component of the
Hamiltonian system. Maximizing the average fidelity is one of common methods for robust control of quantum gates,
[86, 60]. Consider Eδ∈∆ {·} as the expected value with respect to the distribution in ∆, i.e.,

Favg (θ) = Eδ∈∆ {F (θ, δ)} · (141)

Despite the application of average fidelity in several cases, such as weak random noise uncertainties, worst-case fi-
delity is more appropriate to estimate quantum gate errors. The worst case robust optimization (or minimax optimiza-
tion) has been used in several classical problems, including nonlinear programming, [267], problems with constraints,
[268], unconstrained simulation-based problems, [269], amongst others. Some of these approaches can be extended
to the problem of robust control of quantum gates. The worst-case robust optimization problem for quantum gate
fidelity with the aim of finding design variables that maximize the worst case fidelity is expressed as

Maximize Fwc (θ) = min
δ
F (θ, δ)

S ub jected to θ ∈ Θ, δ ∈ ∆·
(142)
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The control constraints set Θ is either convex or it can be well approximated by a convex set. However, the fidelity
is not a convex function of θ for any sample δ ∈ ∆. Powerful methods have been developed for worst-case robust
optimization with non convex cost function problems, [268]. A natural approach for solving non-convex optimization
problems is sequential convex programming (SCP), [60]. Following the methods in [270], and [271], and also the
works done for robust optimization in [271, 272], reference [60] has represented a SCP algorithm to identify robust
control fields. It has been shown that it is possible to generate high-fidelity quantum gates with a substantial robustness
against uncertainties, while simultaneously using limited control resources such as field amplitude, bandwidth, and
fluence, [60]. The algorithm is initialized with the following three items:

(i) A control θ ∈ Θ ⊆ RN , where Θ is assumed as convex.

(ii) Noise samples {δi ∈ ∆, i = 1, . . . , L}, where ∆ is not necessarily convex.

(iii) A convex trust region set Θ̃trust ⊆ RN .

After initialization, the following steps are repeated until stopping criteria is satisfied.

• Calculate fidelities and gradients
F (θ, δi) , ∇θF (θ, δi) ∈ RN , i = 1, . . . , L.

• Via the linearised fidelity F (θ, δi) + θ̃T∇θF (θ, δi), obtain the increment θ̃ ∈ Θ̃trust by solving convex optimiza-
tion.

• Maximize min[F (θ, δi) + θ̃T∇θF (θ, δi)]
subject to θ + θ̃ ∈ Θ, θ̃ ∈ Θ̃trust.

• Update
if min

i
F

(
θ + θ̃, δi

)
> min

i
F (θ, δi), then

substitute θ by
(
θ + θ̃

)
and increase Θ̃trust

else
decrease Θ̃trust

end if

Since SCP is a local optimization strategy, it is not possible to see whether a globally optimal solution has been ob-
tained. In quantum computing, any improvement in fidelity is important since it can significantly reduce the physical
resources needed for fault-tolerant operation. The fidelities that are usually obtained are extremely close to 1. How-
ever, in case that the maximum fidelity of 1 is achieved, it is obviously an optimal solution. SCP can be especially
beneficial for finding possible improvements in the robust gate performance for different values and ranges available
for both control and system designs, [60].

7.6. Quantum Dynamical Decoupling

A substantial obstacle for high-accuracy quantum control is decoherence. The lifetime of quantum information
is typically not long enough to allow practical applications while it is essential to preserve quantum behaviour at the
presence of noise in order to store and process quantum information. Dynamical decoupling (DD), [61], is a promising
methodology to decrease decoherence by weakening the system-environment interaction with a periodic sequence of π
pulses applied to the qubits, [273]. Generally, DD sequences can be divided to the following two groups introduced as
dynamical decoupling sequences with a single rotation axis, Carr–Purcell–Meiboom–Gill (CPMG), [274], and Uhrig
dynamical decoupling (UDD), [275], or multiple rotation axes, such as concatenated dynamical decoupling (CDD),
[276], and Knill dynamical decoupling (KDD) sequences, [277].

DOI: 10.2147/exr
Available online at journals.aijr.org

https://journals.aijr.org/index.php


Quantum Control Modelling, Methods, and Applications

117

Dehaghani et al., Extsv. Rev.; Vol. 2, Issue 1, pp: 75-126, 2022

DD is an important scheme in quantum information processing, [278, 279, 277, 280, 281], which keeps a given
input quantum state or preserve a quantum state coherent while it is combined by logical operations. For instance,
reference [279] demonstrated the robustness of qubit memory error suppression through DD techniques across a vari-
ety of qubit technologies. Reference [277] has presented methods to make DD sequences robust against experimental
errors while preserving good decoupling efficiency in a fluctuating environment. It has been shown that DD technique
is appropriate for implementation in relatively noisy, and small-scale cloud-based quantum computers, [280]. Re-
cently, by combining nonadiabatic holonomic quantum computation and DD, a protocol has been designed which, not
only possesses the intrinsic robustness against control errors, but also protects quantum gates against environment-
induced decoherence, [281]. DD consists in applying a periodic series of inversion pulses to the qubits in cycles of
period τc to refocus the system-environment evolution. Over that period, the time-averaged system environment in-
teraction Hamiltonian vanishes, [282]. The time average over τc can be calculated using average Hamiltonian theory.
Other relevant parameters are the delay τd between pulses and the correlation time τe of the environment, [282]. If
τd < τe, the state conservation of a single qubit is perfectly possible [283]. Although the usefulness of a decoupling
strategy is dependent to the repetition rate of pulses, systems with quick fluctuating environment put huge demands
on the hardware. They may be experienced in several quantum information processing implementations, [284], and
demonstrate the most challenging regime to avoid decoherence, [277]. Because the accuracy of any real operation
is finite, the performance of control fields used for decoupling is also limited by pulse errors, [282, 284], which can
accumulate depending on the DD sequences and result in reduction of the fidelity. Therefore, one needs to analyse
the corresponding errors and proper strategies to combine rotations such that the errors cancel instead of accumulate.
Finite duration of real control pulses is a non ideal error implying a minimum achievable cycle time. It is stated that
high order CDD, [276], or UDD, [275], sequences lose their advantages when the delays between pulses or the pulse
lengths themselves are strongly constrained, [285]. Although the limitation on the cycle time decreases the maximal
achievable DD performance, pulse errors can be even more destructive. The main reason of these errors is the error
between the actual and the ideal amplitude of the control field which results in the deviation of rotation angle from
π, normally by a few percent. Pulse imperfections also may make some DD sequences asymmetric with respect to
the initial conditions. This has been shown for different DD sequences, [277, 282, 286], including CPMG, [274],
which consists of identical π-pulses, and XY-4 sequence, [287], which consists of π-pulses applied along the x, and
y axes. Reference [286] has reached the fidelity of 0.988 for CPMG cycles and 0.989 for the XY-4 cycles between
the experimental matrices, and the ideal matrix. As seen, despite the successful implementation of DD strategies
and the resulting increase of the coherence times by several orders of magnitude, [277, 282, 284], reduction of the
decay rates is mainly limited by pulse imperfections, so it is necessary to make decoupling sequences robust to such
defects. In quantum information processing, several possibilities have been indicated in order to generate high fidelity
sequences, [277, 276]. One technique to compensate the errors is through composite pulses, [261]. Alternatively, one
can design the sequence in away that the error presented by one pulse is compensated by subsequent pulses, without
compensating the error of each pulse individually. The former approach is termed as using robust pulses and the latter
approach as using robust or self-correcting sequences, [277]. Experiments have tested different class-A composite
π-pulses, [277, 284], and it was found out that the following Knill pulse,[277],

(π)π/6+ϕ − (π)ϕ − (π)π/2+ϕ − (π)ϕ − (π)π/6+ϕ (143)

is the most robust against flip-angle and off-resonance errors. Reference [277] has reported a comparison between
standard sequences (not using robust pulses) against sequences with robust pulses. Another important development
in quantum computation is the combination of DD sequences with the methods used for robust quantum gates imple-
mentation, [62]. Since DD does not need auxiliary qubits or measurements, it can be considered as an economical
substitution for complementing quantum error correcting codes, [278], and reaching the error threshold for reliable
quantum computation. The theoretical works in [278, 62, 288] have proposed methods to combine dynamical decou-
pling with quantum error correction. DD pulse sequences, [286], have also been applied to probe the noise spectrum
directly, [289, 290], and detect weak magnetic fields, [291].
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8. Conclusion

Quantum control mainly addresses the design of efficient manipulation methods to create desired behaviors for
the systems obeying quantum-mechanical laws. In this survey, we have reviewed some of the main results and
recent developments in quantum control theory, including the quantum control modelling and controllability, open-
and closed-loop control strategies, and feedback control methods. Open-loop control can almost easily be derived
with successful applications in many instances. Closed-loop quantum control methods may also be applied when
open-loop control methods fail to act effectively. The efficiency of closed-loop control methods has been validated
in several experiments. Feedback control is a widely-used strategy applied for classical control systems. However,
the application of feedback control methods for quantum control problems has inevitable issues mainly caused by
measurements and time delays. Finally, taking into account the importance of robustness of quantum systems for
dealing with uncertainties, several methods for quantum robust control are also surveyed. Overall, based on numerous
techniques developed in classical control, quantum control has a great potential to expand technology and capabilities
beyond our imagination. Currently, some quantum systems can already be controlled as assessed in this paper, while
still much works need to be done. More studies in this field will provide improved control that may be applicable
for more quantum systems. The progress in this field needs the collaboration of experts in different fields of science,
including control engineering, quantum physics, artificial intelligence, computer engineering, physical chemistry,
atomic physics, to name a few.
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