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A B S T R A CT  

There is a substantial amount of literature dealing with many aspects of synthesis and characterization 

of pure and doped binary compounds including Mn-doped ZnO which has been widely studied due to 

its superb properties as a dilute magnetic semiconductor (DMS).Aspects concerning doping limits for 

these compounds is an important stage in the search for new materials. Samples of Zn1-xMnxO 

nanocrystal were synthesized at temperatures of 180 °C and 200 °C using wet or liquid phase synthesis 

method. Dopant concentrations x=0.5, 1, 1.5, 2, 2.5, 5, 10, 20, 30, 40 and 50 per cent were studied. 

Powder x-ray diffraction (PXRD) patterns of the samples were analyzed with a view to determining 

the onset of secondary phases and hence the solubility limit of the dopant. The solubility limit for Mn 

in ZnO samples synthesized at temperature of 200 °C is realized at x <20%. For samples synthesized 

at temperature of 180 °C, the solubility limit is x <0.5%. 
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1 Introduction  

Given the wide range of useful and applicable properties displayed by metallic oxides and the increasing 

ability to modify these properties via various techniques, Mn-doped ZnO has been widely studied, 

especially, the magnetic, semiconducting and optical properties [1], [2]. Additionally, Mn-doped ZnO is a 

good candidate for the realization of superb properties of dilute magnetic semiconductors (DMS) in which, 

in addition to the chare state, electron spin is exploited as a further degree of freedom with implications for 

the efficacy of data storage and transfer. There is a substantial amount of literature dealing with many 

aspects of synthesis and characterization of pure and doped binary compounds. Among the many transition 

metal oxides used as dopants in these binary compounds, manganese is especially important because it 

exhibits a variety of oxidation states (2+, 3+, 4+, 5+, 6+ and 7+) resulting in different chemical and 

structural forms [3], [4]. The properties of doped ZnO depend largely on the extent to which dopant such 

as Mn can be taken up by ZnO. Aspects concerning doping limits for these compounds are not much 

considered. Therefore, determination of the solubility limits for these dopants is an important stage in the 

search for new materials.  

A widely used synthesis route for ZnO (un-doped and doped) crystallites involves the liquid phase 

(precipitation). Here the crystallites are grown at very low temperatures (~50 °C). However, these 

temperatures need to be maintained for a very long time in some instances, 12 hours and above. In some 

few cases the samples are annealed or calcined at temperatures above 300 °C.  Also, because the sample 

precipitates, a large volume of solvent is used. In all cases, centrifuging, washing, rewashing several times 

and discarding of the by-product solution are necessary. There have been numerous publications on the 

synthesis of pure and Mn-doped ZnO nanoparticles for the past decade, with quite a lot of possible routes 

for the preparation of these nanoparticles. However, most of these methods are restricted to research 

purposes because of either the use of toxic precursors and reagents, high temperature, high pressure, 
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expensive equipment or long reaction period. For instance, in synthesizing Mn doped ZnO nanostructures 

by wet chemical technique, Sundar and John [5] use 0.2, 0.4, 0.6, 0.8, 1.0 and 5.0 weight percentage of 

manganese chloride as dopant and zinc acetate dehydrate as precursor. The dried material obtains after 

heating at 160 °C overnight was grinded to obtained powder which was washed several times using ethanol 

and deionized water and calcinated at 500 °C for four hours. The XRD results are indented to a hexagonal 

wurtize structured of zinc oxide and show no evidence of any secondary phase. Iqbal et al [6] prepared pure 

ZnO and Mn doped ZnO nanoparticles at doping concentrations of 1%, 2%, 3% and 4% by mixing citric 

acid and zinc nitrate hexa-hydrate in de-ionized water for 3 hours at ~80 ºC. Gel obtained was further 

heated at 250 ºC into ash, grinded and again calcinated at 300 ºC for 6 hours. The diffraction peaks of the 

XRD show hexagonal wurtzite structure for all the samples 

In the work of Kumbhar et al [7], Zinc oxide nanoparticles were prepared by sol-gel method using zinc 

acetate dihydrate in distilled water with addition of ammonium hydroxide and dried at 80 ºC for 6 h to get 

gel. The gel so obtained was calcinated at 400 ºC for 3 h to obtain the pure zinc oxide nanoparticles. Same 

procedure was adopted for doping ZnO with Mn acetate at 1, 3 and 5%. From the XRD results, all the 

peaks were attributed to ZnO without any secondary phases observed. Vijayakumar and Bhoopathi [8] 

synthesized un-doped and Mn doped ZnO nanoparticles at 2.0, 2.5 and 3.0% by chemical precipitation 

method using zinc and manganese acetate dihydrate dissolved in ethanol adding a solution of sodium 

hydroxide. The precipitates formed were filtered, washed several times with distilled water and ethanol and 

finally dried in hot air oven at 200 ºC. According to the XRD results, all the peaks correspond to wurtzite 

structure ZnO with no characteristic peaks of impurities detected. Boumezoued et al [9] synthesized pure 

and Mn-doped ZnO nanopowders at 1, 3, 5 and 7% by sol-gel technique using zinc acetate dehydrate, citric 

acid monohydrate, monoethanolamine, ethylene glycol as a as starting material, stabilizer and solvent, 

respectively with manganese chloride as the dopant. The obtained solution is stirred at 130 °C for 2h to 

obtain a homogeneous and transparent solution and finally calcined at 500 °C for 4h in a furnace. The XRD 

spectra exhibit peaks of the wurtzite structure. However, the 5% doping shows peaks corresponding to 

Mn3O4 phase. In synthesizing Mn-doped ZnO nanoparticles (1, 2 and 3%) by coprecipitation method, 

Yuwita et al [10] uses dehydrate zinc acetate and manganese powders and HCl and NH4OH solvents as 

precursors. The solution, stirred for 4h at 80 ºC was heated at 100 ºC for 24 hrs. The precipitate was filtered, 

washed using distilled water, dried at temperature of 100 °C and calcined at 400 °C for 3 hours. XRD results 

show that there is an additional peak corresponding to ZnMnO3 phase with respect to the 3% doping with 

Mn ion.  

Mn-doped ZnO nanoparticles without post heat treatment or annealing has rarely been investigated. It is 

against this background that we seek to develop a very simple, inexpensive and environmentally friendly 

synthesis technique to produce both pure and Mn-doped ZnO nanoparticles within the minimum possible 

reaction period without washing of sample. The method used for the synthesis of the un-doped and Mn-

doped ZnO nanoparticles in this work involves the hydrolysis of zinc and manganese acetates in alcohol. 

The method is very simple, eco-friendly and does not involve the release of toxic gases into the 

environment. 

2 Experimental Procedures 

2.1 Synthesis of Pure Un Doped ZnO Nanocrystals 

ZnO nanoparticles were prepared by grinding an amount of 3.292g zinc acetate in an agate mortar with 

pestle and poured into a beaker containing 40 ml of methanol to dissolve. This was placed in a sonicator 

and sonicated for about 20 minutes till all the solute was dispersed. During the sonicating process drops of 

hydrogen peroxide (2 ml) were injected into the solution using a disposable syringe. The reaction mixture 

was transferred to a hot plate and heated slowly to temperature range between 55 °C and 64 °C for complete 

dissolution of precursors and until all fluid was evaporated. The temperature was then raised and held at 

120 °C until the gel dehydrated and solidified into crystals. The white crystals were then cooled and ground. 

https://journals.aijr.in/index.php
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They were then returned to the hot plate at temperatures starting from 120 °C and gradually increasing to 

140 °C (or 160 °C, 180 °C and 200 °C) within 10 minutes and maintained at this temperature for about one 

and half hours till the colour changed from white to yellowish white. This was done in order to complete 

thermal decomposition of the initial precursors. During drying, complete conversion of ZnO2 into ZnO 

occurred and was observed as a colour change. The use of zinc acetate is due to the fact that, metal acetate 

precursors generate fine-grained, sky-scraping specific surface area and powders free of aggregate and 

environmentally friendly. Methanol is used because of its dihydrating property and also zinc acetate 

dihydrate has also been found to be more soluble in methanol and the reflux time necessary for the 

formation of ZnO is faster [11]. Also, interaction of alcohols with Zn metal was found to be a simple 

reaction [12], [13]. The hydrogen peroxide as used in this work, supplies the oxide oxygen whiles the acetate 

acts as base. The mechanisms of thermal decomposition of zinc and manganese acetates play an essential 

role in the preparation of ZnO nanoparticles from the wet or liquid phase. Oxides are formed during 

hydrolysis and condensation of the dissolved species. The mechanism of thermal decomposition of zinc 

acetates in methanol is according to the following reaction:  

Zn (CH3COO)2•2H2O+ CH3OH +H2O2 → CH2(CH3COO)2 + ZnO2 + 2 H2O+ H2+½ O2 

                  i.e.,   

                              H2C-COOH 

                                                             + ZnO2 + 2 H2O+ H2+ ½ O2 

                              H2C-COOCH3 

 

During calcinating, complete conversion of ZnO2 into ZnO occurred and was observed as a colour change. 

The decomposition of ZnO2 is according to the equation: 

ZnO2→ ZnO + ½ O2 

2.2 Synthesis of Mn Doped ZnO Nanocrystals 

In the doping process, the appropriate amount of zinc acetate and manganese acetate were ground in an 

agate mortar with pestle and poured into a beaker containing methanol. The procedure used for the 

synthesis of the ZnO as already outlined above was followed thereafter. The solution became brownish 

due to the introduction of the dopant and consequently produced brownish crystal. The temperature used 

for the doping process was at 180 °C and 200 °C. The colour of the crystals became deeper as the dopant 

concentration increased. The entire process was repeated for all the dopant concentrations, x= 0.5, 1, 1.5, 

2, 2.5, 5, 10, 20, 30, 40 and 50 per cent.   

2.3 Characterization 

XRD analysis of the un-doped and Mn-doped ZnO 

nanocrystal samples was carried out using an X-ray 

powder diffractometer (PANalytical) using the CuKα line 

at λ = 1.54056 x10­10 m. This system uses a Cu source 

with Kα1 radiation (λ=0.154060 nm). A 2θ scanning range 

from 20° to 70° was examined using a step size of 0.0060 

and scan step time of 0.7 s and measuring temp of 25 °C.  

3 Results and Discussion 

With reference to the sample synthesized at 120 °C during 

the first stage of the synthesis of ZnO, the peaks are 

observed at approximately 31.54º, 36.63º, 52.86°, and 

62.83º corresponding to reflections from the planes (111), 

(200), (220) and (311) as shown in figure 1.                         Figure 1: Diffractogram of pure ZnO2   at T = 120 °C 

https://journals.aijr.in/index.php
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The XRD diffraction pattern corresponds to that of the zinc peroxide (ZnO2) cubic structure according to 

ICSD card number 00-013-0311.  All the observed diffraction peaks of this work match the reported results 

for cubic zinc peroxide with JCPDS card No. 13-0311 using the same zinc acetate dehydrate and hydrogen 

peroxide (30%) for synthesis [14], [15]. The XRD pattern of nanoparticles synthesized at temperatures of 

140 °C and 160 °C shown in figure 2(a) and (b) confirms the ZnO hexagonal wurtzite structure according 

to ICSD card numbers 01-078-3315 and 01-071-6424 respectively.  

(a)                                                                                                 (b) 

Figure 2: Diffractograms of (a) pure ZnO at T = 140 °C and (b) pure ZnO nanoparticles at T = 160 °C 

After peak indexing, the diffractogram produced the following planes: (100), (002), (101), (102), (110), (103) 

and (112) at peak positions (2θ values) of approximately 31.76º, 34.31º, 36.22º, 47.52º, 56.63º, 62.83º and 

67.92º, respectively. It could be observed that, in addition to the reflections from planes indexed to ZnO, 

there are additional peaks with low intensity at approximately indexed as ‘x’. All the secondary peaks indexed 

as ‘x’ could be traced to the diffractogram of the zinc acetate. They could be attributed to undissolved zinc 

acetate and its associate by-product which is a colloid complex of water and methyl succinate. It is 

interesting to note that, these additional peaks have also been observed by [16]. As the temperature was 

raised to 180 °C and then to 200 °C, all the additional ‘x’ peaks disappeared as can be seen in figures 3(a) 

and 3(b) respectively using scanning range from 20° to 70°.  

 
(a)                                                                                (b) 

Figure 3: Diffractograms of pure ZnO nanoparticles obtained at (a) T = 180 °C and (b) T = 200 °C 

The powder XRD pattern for Zn1-xMnxO crystallites samples grown at T = 180 °C and T = 200 °C are 

presented in figures 4­8. Figure 4 shows powder XRD pattern for x= 0.5%. The appearance of additional 

peaks at T = 180 °C (figure. 4a) indicate existence of secondary phases. On the basis of the XRD, the 

additional peaks could be attributed to un-dissolved zinc acetate, although, one of the phases was identified 
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as Mn3O4. These features indicate that the Mn (Zn) ions substitute Zn (Mn)in ZnO wurtzite structure. 

However, the XRD pattern at T = 200 °C (figure 4b) for x= 0.5% does not show any additional peaks. 

 
(a)                                                                                                (b) 

Figure 4: XRD pattern for Zn1-xMnxO (x= 0.5%) at (a) T = 180 °C and (b) T = 200 °C  

For 1% doping concentration at T = 180 °C as shown in figure 5(a), seven (7) additional peaks with higher 

intensities were observed. These peaks are absent at T = 200 °C (figure 5b). 

 
(a)                                                                                       (b) 

Figure 5: XRD pattern for Zn1-xMnxO (x= 1.0%) at (a) T = 180 °C and (b) T = 200 °C 

Between x= 1% and x= 10% at T = 180°C, the number of additional peaks and their intensities increases 

as dopant concentration is increased (figure 6a). Again, these peaks are absent at T = 200 °C (figure 6b). 

 
(a)                                                                              (b) 

Figure 6: XRD pattern for Zn1-xMnxO (x=10%) at (a) T = 180 °C and (b) T = 200 °C 
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However, at T = 200 °C, these secondary peaks are observed when x= 20% (figure 7). 

 
(a)                                                                  (b) 

Figure 7: XRD pattern for Zn1-xMnxO (x= 20%) at (a) T = 180 °C and (b) T = 200 °C 

For x>20%, it was observed that, as the dopant concentration is increased, the number of additional peaks 

labeled ‘x’ as well as their intensities increased significantly at both temperatures up to x= 50% (figure 8).  

 
(a)                                                                                      (b) 

Figure 8: XRD pattern for Zn1-xMnxO (x= 50%) at (a) T = 180 °C and (b) T = 200 °C 

Based on the XRD results, the intermediary compounds corresponding to the unwanted peaks indexed as 

‘x’ which were attributed to the incomplete decomposition of the metal-organic source of the zinc and 

manganese acetate by-products which are expected to be removed by evaporation were zinc hydroxide, 

zinc stearate, zinc oxalate hydrate, zinc formate hydrate, zinc carbonate hydroxide, manganese formate, 

manganese oxides and manganese oxalate. Manganese organic compounds resulting from the dissociation 

of manganese acetate are expected to be melting or melted within the temperature range 180 °C - 200 °C 

and therefore n species will become available for incorporation into the ZnO lattice. At this temperature, 

oxides of Mn will begin to form instead.  Similarly, in the synthesis of Mn3O4 structures by [17], two stages 

decomposition of manganese formate occur. The weight loss associated with the decomposition occurs 

between 180 °C and 268 °C. However, the Mn3O4 structures were observed to occur at 200 °C. Clearly, 

therefore a slight change in temperature of 20 °C could cause a change in solubility.  

In comparing the relative intensity of XRD peaks at different doping concentrations, the two prominent 

peaks indexed by the XRD at (100) and (002) planes which are observed at peak positions (2θ values) of 

approximately 31.7º and 34.3º respectively are used with reference to the most prominent peak at 36.2º of 

https://journals.aijr.in/index.php
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(101) plane. Mn doped ZnO nanoparticles synthesized at temperatures of 200 ºC is considered, the changes 

in relative intensity with different doping concentrations are therefore tabulated below (Table 1). 

Table 1: Relative intensity of Mn doped ZnO nanoparticles synthesized at temperatures of 200 ºC 

Mn Doping (%) 
Relative Intensity (%) at 200 °C 

(1 0 0) Plane  (0 0 2) Plane 

0.0 61.68 68.58 

0.5 60.07 53.25 

1.0 58.74 58.80 

1.5 57.77 57.09 

2.0 60.96 50.09 

2.5 58.87 54.33 

5.0 57.77 58.57 

10.0 60.36 48.80 

20.0 58.95 46.08 

30.0 55.23 45.65 

40.0 51.74 44.57 

50.0 47.11 36.60 

All the peaks observed in this work matched directly the literature data for Mn-doped ZnO wurtzite 

structure [18], [19] with the (101) peak being the most prominent. The appearance of additional unidentified 

(‘x’) peaks implies the existence of secondary phases or impurities. It can therefore be assumed that the 

absence of these ‘impurity’ peaks implies that the doping percentage is well within the solubility limit of Mn 

in ZnO. Clearly, this is a function of the temperature of doping, as pointed out earlier. In this work, this 

limit is found to be x<20% for 200 °C and x<0.5 for the 180 °C samples. Above these limits the dopants 

degrades the structure of the sample owing to the formation of secondary phases for Mn clusters that do 

not settle at the Zn2+ site of ZnO [9], [20], [21]. 

Substitution of Mn for Zn2+ requires local expansion or contraction of the lattice to accommodate the 

manganese ion due to ionic radii differences. Since Mn can exist as Mn2+, Mn3+ and Mn4+ (respective ionic 

radii are 0.83Å, 0.65Å and 0.53Å), one cannot be certain of the actual distribution of Mn in the lattice [22], 

[23]. If Mn2+ ion of greater ionic radius substitutes Zn2+(0.74 Å), the peaks will shift towards the lower 

angles because of increase in d-spacing due to substitution of lattice site by ion of higher radius. For smaller 

ionic radii like Mn3+ and Mn4+, settlement in interstices of ZnO become dominant instead of substitution 

of Zn2+. However, when Mn3+ and Mn4+ go into interstitial sites, they impel the surrounding atoms because 

their size is greater than interstitial sites. Consequently, the lattice is stretched and interplanar distances 

increase. This again results in increase in d-spacing and the peaks shift towards lower angles [24].  

4 Conclusion 

A very simple, inexpensive and environmentally friendly synthesis technique is adopted to produce Mn-

doped ZnO nanoparticles without post heat treatment or annealing within the minimum possible reaction 

period and temperature. The solubility limit for Mn in ZnO for synthesized at 200 °C is realized at x < 20% 

and for the lower temperature of 180 ºC, the corresponding figure is x < 0.5% respectively. Beyond these 

dopant concentrations, several secondary peaks are observed in the XRD patterns indicating the presence 

of phase other than Zn1-xMnxO. The result of this study has set a doping limit for Mn in ZnO based on the 

synthesis conditions used. 
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