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For formulating mathematical models, engineering problems
and physical problems, Nonlinear ordinary di�erential equa-
tions(NODEs) are used widely. Nevertheless, explicit solutions
can be obtained for very few NODEs, due to lack of techniques to
obtain explicit solutions. Therefore methods to obtain approxi-
mate solution for NODEs are used widely. Although symmetry
groups of ordinary di�erential equations (ODEs) can be used to
obtain exact solutions however, these techniques are not widely
used. The purpose of this paper is to present applications of
Lie symmetry groups to obtain exact solutions of NODEs . In
this paper we connect di�erent methods,theorems and de�nitions
of Lie symmetry groups from di�erent references and we solve
�rst order and second order NODEs. In this analysis three
di�erent methods are used to obtain exact solutions of NODEs.
Using applications of these symmetry methods, drawbacks and
advantages of these di�erent symmetry methods are discussed
and some examples have been illustrated graphically. Focus is
�rst placed on discussing about the notion of symmetry groups of
the ODEs. Focus is then changed to apply them to �nd general
solutions for NODEs under three di�erent methods. First we �nd
suitable change of variables that convert given �rst order NODE
into variable separable form using these symmetry groups. As
another method to �nd general solutions for �rst order NODEs,
we �nd particular type of solution curves called invariant solution
curves under Lie symmetry groups and we use these invariant
solution curves to obtain the general solutions. We �nd general
solutions for the second order NODEs by reducing their order to
�rst order using Lie symmetry groups.
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1 Introduction

Lie group analysis is used in many di�erent �elds such as control theory, algebraic topology,di�erential
geometry,relativity [1], physics [2, 3, 4, 5, 6, 7, 8], geometry, mechanics [9], Chemistry and Chemical biology
[10]. Moreover it has been used in mathematical models such as models regarding deceases [11, 12, 13],
models of epidemics [14] and �nance [15, 16].

Although there are many di�erent standard methods to obtain general solutions of ODEs, these techniques
can be used only for speci�c types of ordinary di�erential equations (ODEs), such as linear, separable,
homogeneous, ecaxt...etc. Therefore methods for �nding approximations to the solutions are widely used.
Maris Marius Sophus Lie who was a Norwegian mathematician, discovered that most of these standard
solution methods are based on the symmetry groups of ODEs [1] and in the 1880s he introduced the concept
of continuous symmetry groups called Lie symmetry groups [17] which can be used to obtain exact solutions
of ODEs including which are not �t into standard type that we mentioned above.
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For formulating mathematical models, engineering problems and physical problems, Nonlinear ordinary
di�erential equations (NODEs) are used widely [18][2]. Nevertheless, explicit solutions can be obtained for
very few NODEs [19]. Most of the standard solution methods are insu�cient to obtain exact solutions of
NODEs [19]. Although symmetry methods can be used to obtain the exact solutions of ODEs, these methods
are not widely used. In this thesis we present basic theories and de�nitions regarding Lie symmetry groups
and we use these symmetry groups to obtain exact solutions of �rst and second order NODEs. For the
�rst order NODEs two di�erent methods are presented to obtain exact solutions. Mainly, the Lie symmetry
groups of a given NODE are used to �nd suitable change of variables that convert the NODE into variable
separable form. Then we obtain exact solution by integration. In the second method we �nd special type
of solution curves of a given NOD called invariant solution curves under Lie symmetry groups and we map
these invariant solution curves to other solution curves using di�erent Lie symmetry groups, which leads to
obtain general solution of the NODE. For the higher order NODEs Lie symmetry groups are used to �nd
appropriate change of variables which can be used to reduce the order of the NODEs. For this purpose we
consider extension of symmetry groups in two dimensional euclidean space to higher dimensional euclidean
space.

2 Symmetries and One Parameter Lie Group of Transformations.

For understanding the notion of symmetries of ODEs, it is supportive to understand the symmetries of
geometrical planer objects. A symmetry of a geometrical planer object is a transformation whose action
does not change the physical appearance of the object [20]. As an example, for an equilateral triangle ,
anti-clock wise or clock-wise rotations of 4π

3 ,2π and 2π
3 about the center are symmetries , since the �rst

object and its image under these transformations are indistinguishable. If a symmetry of a mathematical
object can't be de�ned by a continuous parameter, that symmetry is called discrete symmetry [20]. Therefore
above rotations can be considered as discrete symmetries of the equilateral triangle. Consider a unit circle
given by cos(θ)2 + sin(θ)2 = 1. Then a rotation of ε ∈ (−π, π] angel around the center is a symmetry and it
can be represented by cos(θ+ ε)2 + sin(θ+ ε)2 = 1. This transformation can be considered as a continuous
symmetry since ε can be varied continuously i.e ε ∈ (−π, π]. To discuss about symmetries of ODEs we
restrict our attention to continuous symmetries. Symmetries of ODEs are de�ned under one parameter Lie
group of transformations. Next de�nition of one parameter Lie group of transformation is interpreted from
[21]

De�nition 2.1 (One parameter Lie group of transformations). Let v = (x1, ..., xn) ,v ∈ U,U ⊂ Rn.The set
of transformations

v∗ = Ψ(v, ε)

∀v ∈ U , ε ∈ Q,Q ⊂ R, represent one parameter Lie group of transformations(OLGT) on U if it satis�es
following seven conditions. ϕ(ε, δ) represents the composition of parameters δ, ε ∈ Q

1. ε ; ε ∈ Q the transformations are bijective transformations in U .

2. Q and ϕ form a group G and ε = 0 corresponds the the identity element e of G.

3. Q is a sub interval of R.

4. Ψ(v, 0) = v

5. If v∗∗ = Ψ(v∗, δ) then v∗∗ = Ψ(v, ϕ(ε, δ))

6. ψ is in�nitely di�erentible with respect to v ∈ U and analytic function of ε ∈ Q.

7. ϕ(ε, δ) is an analytic function of δ and ε.

These point transformations have been de�ned depending on one continuous parameter ε. The group
de�ned in condition 2 is called Local Lie group [1]. In this paper following notations are used to represent
One parameter Lie group of transformations acting on space R2.

v∗ = (x∗, y∗) = Ψ(v, ε) = (X(x, y; ε), Y (x, y; ε)) = (X(v; ε), Y (v; ε)) (1)
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where v = (x, y) , X and Y represents smooth functions and ε is a real parameter.

A OLGT is a symmetry group(Lie symmetry group) of a ODE if the transformations map any solution
curve into another solution curve [1, 21]. A Lie group of transformations is said to be admitted by an ODE
if it is a Lie symmetry group of that ODE [21].

Let 1 be a one parameter Lie group of transformations admitted by an ODE. Then this group of trans-
formations map any solution curve of the ODE into another solution curve. Therefore a family of solution
curves of the ODE and its image under the transformations are indistinguishable. Then that one parameter
Lie group of transformations satis�es the symmetry condition of the family of solution curves called the
symmetry condition of the ODE. Lie symmetry groups are manifolds and their forward transformations and
inverse transformations are di�eomorphisms [22]. Using these properties we can prove that these transfor-
mations satisfy all conditions to be a symmetry of an ODE [23]. Mathematical expression for the symmetry
condition of ODEs is given in the next de�nition interpreted from [20]

De�nition 2.2. Consider the nth order ODE given by dny
dxn = g(x, y, y

1
, ..., y

n−1
). Let 1 be a OLGT admitted

by g(x, y, y
1
, ..., y

n−1
). Then the symmetry condition of g(x, y, y

1
, ..., y

n−1
) is given by

dny∗

dx∗n
= g(x∗, y∗, y∗

1
, ..., y∗

n−1
) when

dny

dxn
= g(x, y, y

1
, ..., y

n−1
). (2)

where y
t
= dty

dxt and y
∗
q
= dqy∗

dx∗t , t = 1,2,3,...,n

The condition 2 implies that family of solution curves in (x, y)-plane and its image under the LOGT in
(x∗, y∗)-plane are indistinguishable.

De�nition 2.3 (Orbit). Consider the one parameter Lie group of transformations 1. The orbit of v∗ =
Ψ(v, ε) passing through point v is the set of all points that v can be mapped by the appropriate selection of
ε.[20]

Consider v∗ = Ψ(v, ε) as OLGT admitted by a ODE . Then v∗ = Ψ(v, ε) continuously maps one solution
curve into other solution curves of the ODE. Consider a one particular point v on a solution curve. Then
the path that point v is mapped into other points in other solution curves can be considered as an orbit.
Following de�nition is interpreted from [21] .

De�nition 2.4 (In�nitesimals). Let v = (x1, x2, ..., x4) ∈ Q , Q ⊂ R. Consider the OLGT Ψ(v, ε) de�ned
in de�nition 2.1.

Θ(v) =
∂Ψ(v, ε)

∂ε

∣∣∣∣
ε=0

(3)

Θ(v) are called the in�nitesimals of Lie group of transformations.

The in�nitesimals of One parameter Lie group of transformations 1 acting on R2 space are represented
by the standard notations ξ(x, y) and η(x, y) as follows .

Θ(v) =

(
dx∗

dε

∣∣∣∣
ε=0

,
dy∗

dε

∣∣∣∣
ε=0

)
= (ξ(x, y), η(x, y))

Θ(v) represents tangent vector �eld of the corresponding OLGT [20]. The maximal integral curves (�ow
curves) generated by vector �eld Θ(v) same as the corresponding one parameter Lie group of transformations
with the same domain and the in�nitely many orbits of v∗ = Ψ(v, ε) represents these maximal integral curves
[1]. For the justi�cation of above last statement refer [1] from pages 24 to 28.

Example 2.5. Consider The OLGT v∗ = ψ(v, ε) given by x∗ = eεx and y∗ = e−εy [17] where v∗ =
(x∗, y∗),v = (x, y) and ε is a real parameter. Then the in�nitesimals of v∗ = ψ(v, ε) is given by (dx

∗

dε |ε=0,
dy∗

dε |ε=0) =

ISSN:2456-7108
Available online at journals.aijr.org

https://journals.aijr.org/index.php


Solution Methods for Nonlinear Ordinary Di�erential Equations Using Lie Symmetry Groups

40

(x,−y). The vector �eld (x,−y) and some �ow curves generated by the vector �eld are illustrated in Figure
1. The black color curves represent the �ow curves or the orbits.

Figure 1: vector �eld (x,-y) with �ow curves

De�nition 2.6 (In�nitesimal Generator). Let v = (x1, ..., xn) ∈ Q , Q ⊂ R.Consider the OLGT de�ned in
de�nition 2.1. The in�nitesimal generator of v∗ = Ψ(v, ε) is given by

X̄ = X̄(v) =

n∑
i=1

Θi(v)
∂

∂vi
(4)

For any di�erentiable function g(v) = g(x1, x2, ..., xn)

X̄g(v) =

n∑
i=1

Θi(v)
∂g(v)

∂vi

Above de�nition has been interpreted from [21]. The in�nitesimal generator is used to de�ne the Lie
algebra which is used for �nding solutions for partial di�erential equations [2, 3, 4, 7] and for symmetry
generating models [24].

Theorem 2.7 (First fundamental theorem of Lie). There exists a parameterization τ(ε) such that OLGT
de�ned in de�nition 2.1 is equivalent to the solution of the initial value problem

dv∗

dΥ
= Θ(v∗) (5)

with v∗ = v when τ = 0. where

Υ(ε) =

∫ ε

0
ω(ε) dε

ω(ε) =
∂ϕ(µ, λ)

∂λ

∣∣∣∣
(µ,λ)=(ε,ε−1)

ω(0) = 1 , µ, λ are real parameters and ε−1 is the inverse element of ε in the local Lie group G. Under this
re-parameterization composition of parameters becomes additive.

For the proof refer [21] page 38. We can use �rst fundamental theorem of Lie to obtain the Lie symmetry
groups of a given ordinary di�erential equation when the corresponding in�nitesimals are known.
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Consider the one parameter Lie group of transformations 1 with the in�nitesimals ϑ(v) = (ξ(x, y), η(x, y)).
According to �rst fundamental theorem of Lie we can consider v∗ = Ψ(v, ε) as one parameter Lie group of
transformations where the composition of parameters is additive. Let µ and λ be two parameters and ϕ be
the composition of parameters. Then

∂ϕ(µ, λ)

∂λ
=
∂(µ+ λ)

∂λ
= 1

Hence

ω(ε) =
∂ϕ(µ, λ)

∂λ

∣∣∣∣
(µ,λ)=(ε,ε−1)

= 1

∣∣∣∣
(µ,λ)=(ε,ε−1)

= 1

Then

Υ(ε) =

∫ ε

0
1dε = ε

dv∗

dΥ(ε)
= Θ(v∗)

dv∗

dε
= Θ(v∗)

where v∗ = v when ε = 0.Therefore the initial value problem 5 becomes

dx∗

dε
= ξ(x∗, y∗)

dy∗

dε
= η(x∗, y∗) (6)

with x∗ = x, y∗ = y when ε = 0.

Example 2.8. For this example a NODE is taken from the exercises of [20]. Consider the NODE dy
dx = 3y

x +
x5

2y+x3 . (ξ(x, y), η(x, y))=(x, 3y) [20] are in�nitesimals of a Lie symmetry group of the NODE. Let v∗ = Ψ(v, ε)

be a one parameter Lie group of transformations with the given in�nitesimals where v∗ = (x∗, y∗), v = (x, y)
and ε is a real parameter. By 6

dx∗

dε
= ξ(x∗, y∗)

dy∗

dε
= η(x∗, y∗)

with x∗ = x, y∗ = y when ε = 0. Then to obtain x∗ and y∗ we solve above two ODEs respectively.

dx∗

dε
= ξ(x∗, y∗) = x∗

dx∗

x∗
= dε∫

dx∗

x∗
=

∫
dε

ln(x∗) + c(x, y) = ε

v∗ = v when ε = 0.Hence x∗ = x when ε = 0. Therefore

ln(x) + c(x, y) = 0

c(x, y) = − ln(x)

Then

ln(x∗)− ln(x) = ε

ln(
x∗

x
) = ε

x∗ = eεx
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Similarly we can obtain y∗ = e3εy by solving the initial value problem dy∗

dε = η(x∗, y∗) = 3y∗with y∗ = y
when ε = 0. Therefore v∗ = Ψ(v, ε) = (eεx, e3εy) and composition of parameters is additive. We can check
whether this is a symmetry group or not for the given ODE by checking the symmetry condition of the given
ODE.

dy

dx
=

3y

x
+

x5

2y + x3

we can obtain dy∗

dx∗ in terms of x and y by the chain rule.

dy∗

dx∗
=
dy∗

dx
/
dx∗

dx

= e2ε
dy

dx

Then we can obtain 3y∗

x∗ + x∗5

2y∗+x∗3 in terms of x and y by substituting the transformations.

3y∗

x∗
+

x∗5

2y∗ + x∗3
=

3e3εy

eεx
+

e5εx5

2e3εy + e3εx

= e2ε
dy

dx

Therefore we can obtain
dy∗

dx∗
=

3y∗

x∗
+

x∗5

2y∗ + x∗3

Therefore dy∗

dx∗ = 3y∗

x∗ + x∗5

2y∗+x∗3 when dy
dx = 3y

x + x5

2y+x3 . Hence v
∗ = Ψ(v, ε) satis�es the symmetry condition

for the given ODE.

De�nition 2.9 (Total derivative Operator). The total derivative with respect to x is given by

Dx =
∂

∂x
+ y

1

∂

∂y
+ ...+ y

n+1

∂

∂y
n

+ ... (7)

where dy
dx = Dxy

Dxx
and y

n
= dny

dxn , n=1,2,3...[21]

2.1 Canonical Coordinates

If a given ODE exits in variable separable form we can obtain the exact solution by the solution method
separation of variables. Otherwise we can convert the ODE into separable form using appropriate change
of variables. But �nding this appropriate change of variables is not always easy task. This section contains
method of �nding appropriate change of variable that convert a given ODE into separable form using its Lie
symmetry groups.

De�nition 2.10. [Canonical Coordinates] Let v = (x1, x2, ..., xn) lie in region D ⊂ Rnand v∗ = ψ(v, ε)
be a one parameter Lie group of transformations de�ned in 2.1. Consider the change of coordinates (one
to one and continuously di�erentiable in the domain) u = (y1(x), y2(x), ..., yn(x)).Then X̄ = Ȳ .Where X̄
is the in�nitesimal generator of v∗ = Ψ(v, ε) in terms of coordinates x and Ȳ is in�nitesimal generator of
v∗ = Ψ(v, ε) in terms of y.

Then u is called a set of canonical coordinates for the Lie symmetry v∗ = Ψ(v, ε) if with respect to u the
one parameter Lie group of transformations becomes

y∗i = yi, i = 1, 2, ..., n− 1

y∗n = yn + ε
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Above de�nition have been interpreted based on [21]. One parameter Lie group of transformations under
the canonical coordinates is called canonical form of the one parameter Lie group of transformations [25].

Consider the �rst order ordinary di�erential equation give by dy
dx = f(x, y). Let 1 be a Lie symmetry

group of the ODE. Let (r(x, y), s(x, y)) be the canonical coordinates of v∗ = ψ(v, ε) and ds
dr = F (r, s) be the

given ODE in terms of Canonical coordinates. Then according to de�nition 2.10 in terms of these canonical
coordinates v∗ = ψ(v, ε) becomes its canonical form given by

r∗ = r s∗ = s+ ε

Above the canonical form of v∗ implies that transformations map one solution curve of F (r, s) to another
solution curve into direction of dependent variable s. It means that the slop of the solutions curves does not
depend on variable s. Hence F (r, s) exits in variable separable form. we can justify that F (r, s) is separable
as follows.
By the symmetry condition of ds

dr = F (r, s) we can obtain

ds∗

dr∗
= F (r∗, s∗) = F (r, s+ ε)

Using total derivative operator

ds∗

dr∗
=
s∗r + s∗s.s

′

r∗r + r∗s .s
′

=
ds

dr
= F (r, s)

Therefore F (r, s + ε) = F (r, s). Hence F (r, s) does not depend on variable s. Then the ODE ds
dr = F (r, s)

can be written in the form ds
dr = F (r). Hence ds

dr exists in variable separable form.
Let X̄ be the in�nitesimal generator of v∗ = Ψ(v, ε) with respect to coordinates v = (x, y) and Ȳ be the
in�nitesimal generator of v∗ = Ψ(v, ε) with respect to canonical coordinates u = (r(x, y), s(x, y)). The
in�nitesimals of v∗ = Ψ(v, ε) with respect to coordinates u are given by

∂r∗

∂ε

∣∣∣∣
ε=0

= 0
∂s∗

∂ε

∣∣∣∣
ε=0

= 1

Therefore the in�nitesimal generator Ȳ can be written in the form

Ȳ =
∂

∂s

The in�nitesimals of v∗ = Ψ(v, ε) with respect to coordinates v are given by

ξ(x, y) =
∂x∗

∂ε

∣∣∣∣
ε=0

η(x, y) =
∂y∗

∂ε

∣∣∣∣
ε=0

Then X̄ can be written in the form

X̄ = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y

By de�nition 2.10

X̄r = ξ(x, y)
∂r

∂x
+ η(x, y)

∂r

∂y
= Ȳ r = 0

X̄s = ξ(x, y)
∂s

∂x
+ η(x, y)

∂s

∂y
= Ȳ s = 1

By solving following two partial di�erential equations using method of characteristics [26][2] we can �nd
the canonical coordinates (r(x, y), s(x, y)).

ξ(x, y)
∂r

∂x
+ η(x, y)

∂r

∂y
= 0 (8)
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ξ(x, y)
∂s

∂x
+ η(x, y)

∂s

∂y
= 1 (9)

Above construction of equations 8 and 9 has been interpreted based on the content of [21].

Theorem 2.11. Every one parameter Lie group of transformations can be reduced into canonical form[25]

By theorem 2.11 we can conclude that for any one parameter Lie group of transformations there is
canonical coordinates which reduce it into canonical form.

2.2 Invariant Curves

For some ODEs exits solution curves of a given ODE that can't be mapped into another solution curves
by a Lie symmetry group of that ODE because of the transformations map these curves to itself. These
curves are called invariant solution curves under the Lie group of transformations [21]. Following theorem is
interpreted from [21]

Theorem 2.12. [Invarient Curves] A curve written on solved form G(x,y)= y - g(x)=0 is an invariant curve
for a one parameter Lie group of transformations v∗ = ψ(v, ε) whose tangent vector �eld is (ξ(x, y), η(x, y)).
with in�nitesimal generator X = ξ(x, y) ∂

∂x + η(x, y) ∂
∂y if and only if

XG(x, y) = η(x, y)− ξ(x, y)g′(x) = 0 (10)

If a solution curve of a ODE satis�es 10 under a Lie symmetry group of the ODE we called it invariant
solution curve of the ODE under the Lie symmetry group. A curve is invariant under a one parameter Lie
group of transformations if and only if no orbit crosses that curve [20]. Therefor invariant solution curves
of a ODE under a Lie symmetry group are not crossed by the in�nitely many orbits or in�nitely many �ow
curves generated by the vector �eld (ξ(x, y), η(x, y)).

Example 2.13. Consider the Riccati-type ordinary di�erential equation dy
dx = y2− y

x −
1
x2 . Its Lie symmetry

group is given by x∗ = eεx, y∗ = e−εy [17]. Then in�nitesimals are given by (ξ(x, y), η(x, y)) = (x,−y).
Using 10 we can obtain the invariant solution curves under the corresponding Lie symmetry group.

η(x, y)− ξ(x, y)(
dy

dx
) = 0

−y − x(y2 − y

x
− 1

x2
) = 0

y =
1

x
y =

−1

x
(11)

Then under the transformations x∗ = eεx , y∗ = e−εy the invariant curve y = 1
x becomes

y∗ =
1

x∗

Then

e−εy =
1

eεx

y =
1

x

Therefore transformations in the symmetry group map the invariant curve y = 1
x to itself.

In Figure 1 we have presented the vector �eld (x,−y) and some �ow curves. Figure 2 illustrates how
these invariant curves exist in the vector �eld (x,−y) with the �ow curves illustrated in Figure 1. Blue
curves represent the invariant curve y2 =

−1
x and red curves represent the invariant curve y1 =

1
x .
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Figure 2: vector �eld (x,-y) with �ow curves and curves 1
x , −1

x

Figure 2 shows how these invariant solution curves exist in a way that no �ow curve crosses these curves.
In some physical phenomena, the invariant solution curves can be used to explain the important features
[4] but in this project, We use invariant solution curves under a Lie symmetry group to obtain the general
solution of the corresponding ODE. Two solved examples have been given in chapter 6.

3 Prolongation of One Parameter Lie Group of Transformations

Prolongation of Lie group of transformations is the extension of a Lie group of transformations de�ned on two
dimensional euclidean space to a Lie group of transformations de�ned on k+1(k > 1) dimensional euclidean
space. In this chapter we consider x as the only independent variable and other variables are dependent
variables . Next theorem is interpreted from [21]

Theorem 3.1. Let v∗ = (x∗, y∗) be a one parameter Lie group of transformations admitted by kth (k >
1)order ordinary di�erential equation where v∗ = (x∗, y∗), v = (x, y),ε is a real parameter and

x∗ = X(x, y; ε) = X(v; ε) y∗ = Y (x, y; ε) = Y (v; ε) (12)

X and Y are smooth functions. Let y
q
= dqy

dxq and y∗
q
= dqy∗

dx∗q , q = 1,2,3,... .Then

y∗
1
= Y 1(x, y, y

1
; ε) =

∂Y (v;ε)
∂x + ∂Y (v;ε)

∂y y
1

∂X(v;ε)
∂x + ∂X(v;ε)

∂y y
1

(13)

This theorem shows that the �rst derivative of transformed dependent variable y∗ can be represented by
parameterized transformation Y 1(x, y, y

1
; ε).

Theorem 3.2. The Lie group of transformations 12 acting on (x,y)-space extends to its kth extension, which
is the following one parameter Lie group of transformation acting on (x, y, y

1
, y
2
, ..., y

k
)- space

x∗ = X(x, y; ε)

y∗ = Y (x, y; ε)
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y∗
1
= Y 1(x, y, y

1
; ε)

...

y∗

k
= Y k(x, y, y

1
, y
2
, · · · , y

k
; ε) =

∂Y k−1

∂x + y
1
.∂Y

k−1

∂y + · · ·+ y
k
.∂Y

k−1

∂ y
k−1

∂X(v;ε)
∂x + y

1
.∂X(v;ε)

∂y

where Y 1 = Y 1(x, y, y
1
; ε) is de�ned by 13 , Y k−1 = Y k−1(x, y, y

1
, · · · , y

k−1
; ε) and y

q
= dqy

dxq and y∗
q
= dqy∗

dx∗q , q =

1,2,3,....

For the complete proof follow [21] page 56. Using theorem 3.2 we can de�ne the kth extended in�nitesimal
generator of 12 and we can use this extended in�nitesimal generator to �nd in�nitesimals.
By expanding kth extension of 12 in Taylor series about ε = 0 , we can obtain .

x∗ = X(x, y; ε) = x+ ε.ξ(x, y) +O(ε2)

y∗ = Y (x, y; ε) = y + ε.η(x, y) +O(ε2)

y∗
1
= Y 1(x, y, y

1
; ε) = y

1
+ εη1(x, y, y

1
) +O(ε2)

...

y∗

k
= Y k(x, y, y

1
, ..., y

k
; ε) = y

k
+ εηk(x, y, y

1
, y
2
, ..., y

k
) +O(ε2) (14)

Therefore the in�nitesimals of extended Lie group of transformation is given by

(ξ(x, y), η(x, y), η1(x, y, y
1
), ..., ηk(x, y, y

1
, y
2
, ..., y

k
))

and the kth extended in�nitesimal generator is given by

X̄k = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
+ η1(x, y, y

1
)
∂

∂y
1

+ ...+ ηk(x, y, y
1
...y

k
)
∂

∂y
k

(15)

Theorem 3.3. Let ηk(x, y, y
1
, y
2
, ..., y

k
) be the in�nitesimal provided by the transformation y∗

1
= Y k(x, y, y1, ..., yk; ε)

de�ned in (11).Then

ηk(x, y, y
1
, y
2
, ..., y

k
) = Dx.η

k−1 − y
k
.Dxξ (16)

where Dx is total derivative operator with respect to x

Above theorem has been interpreted from [20]. This theorem is used to obtain explicit formulas for the
in�nitesimals of extended transformations.

Theorem 3.4. Consider the Lie group of transformations 12 admitted by kth (k > 1) order ODE. Let
(r(x, y), s(x, y)) be corresponding canonical coordinates satisfying Xr = 0 and Xs = 1. Then solving the kth

order ODE reduced to solving (k − 1)th order ODE.

dk−1u

drk−1
= G(r, u,

du

dr
, ...,

dk−2u

drk−2
)

where ds
dr = u and X̄ is the in�nitesimal generator.

For the complete proof of theorem 3.4 follow [21] page 111. According to this theorem we can reduce the
order of a given higher order NODE using the canonical coordinates of a Lie symmetry group of the NODE.
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4 Linearized Symmetry Condition of ODEs

In this chapter for �rst order ODEs and higher order ODEs two di�erent equations are presented to obtain
general solutions for in�nitesimals of their Lie symmetry groups.

4.1 Linearized Symmetry Condition of �rst order ODEs

This session contains the construction of linearized symmetry condition of higher order ODEs.

Consider the 1st order ODE given by dy
dx = g(x, y). Let 1 be a symmetry group of f(x, y).

According to the symmetry condition 2

dy∗

dx∗ = g(x∗, y∗) when dy
dx = g(x, y)

Then by total derivative operator
Dyy

∗

Dxx∗
=
y∗x + y′y∗y
x∗x + y′x∗y

= g(x∗, y∗) (17)

By expanding x∗, y∗ and g(x∗, y∗) in Taylor series about ε = 0, and ignoring terms of order ε2 and higher

x∗ = x+ εξ(x, y)

y∗ = y + εη(x, y)

g(x∗, y∗) = g(x, y) + ε(gx(x, y)ξ(x, y) + gy(x, y)η(x, y))

(18)

Then by substituting equations 18 into 17

ηx − ξyg
2 + (ηy − ξx)g = ξgx + ηgy (19)

Linearized symmetry condition of �rst order di�erential equations is given by equation 19. Above
construction of equation 19 is represented from the content of [20] and [27].

Example 4.1. Consider the non linear ordinary di�erential equation dy
dx = g(x, y) = 2y+ xy2 [17] Then the

Linearized symmetry condition 19 becomes

ηx − ξy(2y + xy2)2 + (ηy − ξx)(2y + xy2) = ξ(y2) + η(2 + 2xy)

Appropriate assumptions for the forms of the in�nitesimals should be made to solve this symmetry condition
otherwise it is impossible to solve the equation [27]. Assume that ξ(x, y) = I(x) and η(x, y) = J(x)y2 where
I and J are functions of x. Then Linerized symmetry condition becomes

J ′y2 + (2Jy − I ′)(2y + xy2)− I(y2)− (J)(y2)(2 + 2xy) = 0 (20)

Then by comparing coe�cients of y in R.H.S and L.H.S of 20 we can obtain

2I ′ = 0

Hence

I = c, c ∈ R

Then by substituting I = c, c ∈ R to 20 and comparing coe�cients of y in R.H.S and L.H.S of 20 we can
obtain

J ′ + 2J − c = 0

Hence

J =
c

2

Therefore ξ(x, y) = I(x) = c and η(x, y) = J(x)y2 = cy2

2
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5 Linerized Symmetry Condition of Second and Higher Order ODEs

This session contains the construction of linearized symmetry condition of higher order ODEs. Following
theorem is interpreted based on [21]

Theorem 5.1. Consider the one parameter Lie group of transformations 1with the in�nitesimal generator
X = ξ(x, y) ∂

∂x + η(x, y) ∂
∂y . Let Xk = ξ(x, y) ∂

∂x + η(x, y) ∂
∂y + η1(x, y, y

1
) ∂
∂y
1

+ ... + ηk(x, y, y
1
, ..., y

k
) ∂
∂y
k

be the

kth extended in�nitesimal generator of 1. Then the kth order ODE y
k
= f(x, y, y

1
, y
2
, ..., y

k−1
) admits this one

parameter Lie group of transformations if and only if Xk(y
k
− f(x, y, y

1
, ..., y

k−1
)) = 0

Then by expanding Xk(y
k
− f(x, y, y

1
, ..., y

k−1
)) = 0,we can obtain

ηk − [ξ
∂f

∂x
+ η

∂f

∂y
+ η1

∂f

∂y
1

+ ...+ ηk−1 ∂f

∂ y
k−1

] = 0 (21)

The equation 21 is called Linearized symmetry condition of second and higher order ordinary ODEs. For a
given NODE we can use this Linearized symmetry condition to �nd general solutions for the in�nitesimals
of its Lie symmetry groups.

6 Applications

In this session we present examples of solving �rst and second order NODEs using Lie symmetry groups. In
this session we use following notations. y

q
= dqy

dxq , q = 1,2,3,.... and y
1
= y′ = dy

dx .

6.1 First Order NODEs.

This section contains the examples of �nding exact solutions for the �rst order NODEs using Lie symmetry
groups.

6.1.1 Method 1 [Using Canonical Coordinates]

In the �rst method for solving �rst order NODEs, we use canonical coordinates to convert a given NODEs
into variable separable form [17],[20],[27].

Example 6.1. In this example , we obtain exact solutions for a NODE using canonical coordinates.
Consider the ODE [17]

dy

dx
= 2y + xy2

In example 4.1 we obtained general solutions for the in�nitesimals of its Lie symmetry groups. ξ(x, y) = c

and η(x, y) = cy2

2 . Let c = 1.Then the in�nitesimals become (1, y
2

2 ) .Then the in�nitesimal generator is
given by

X̄ =
∂

∂x
+
y2

2

∂

∂y

According to theorem 2.11 there exists canonical coordinates (r(x,y),s(x,y)) such that the Lie symmetry
group becomes

r∗ = r s∗ = s+ ε

where ε is a real parameter. Then the equations 8 and 9 become

∂r

∂x
+
y2

2

∂r

∂y
= 0
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∂s

∂x
+
y2

2

∂s

∂y
= 1

The characteristic equation dx
1 = 2dy

y2
corresponds to the partial di�erential equation ∂r

∂x + y2

2
∂r
∂y = 0. Hence

we �nd r by solving the characteristic equation dx
1 = 2dy

y2
.∫

dx

1
=

∫
2dy

y2

x =
−2

y
+ c, c ∈ R

c =
xy + 2

y
, c ∈ R

Therefore, according to method of characteristics r(x, y) = c = xy+2
2 . Similarly, we �nd the dependent

coordinate s by solving the characteristic equation dx
1 = 2dy

y2
= ds

1 .

s(x, y) =

∫
ds

1
=

∫
dx

1

s(x, y) = x+ c , c ∈ R

Hence the canonical coordinates are given by (r(x, y), s(x, y) = (xy+2
y , x). Then we can convert the NODE

into variable separable form using these canonical coordinates. By total derivative operator

ds

dr
=
sx + y′sy
rx + y′ry

=
1

1 + (2y − xy2)−2
y2

=
1

(1− 2r)

Therefore the given NODE exists in a variable separable form in trems of canonical coordinates. By integra-
tion. ∫

ds =

∫
1

(1− 2r)

s =
−1

2
ln(2r − 1) + c1 , c1 ∈ R

We obtain exact solution of the given NODE by converting the canonical coordinates to original coordinates.

y =
4

1 + e−2xc2− 2x
, c2 ∈ R

The invariant solution curves for the corresponding Lie symmetry group can be obtained by solving 10 for y.

η(x, y)− ξ(x, y)y′ = 0

y2

2
− (2y − xy2) = 0

Then the invariant solution curves are given by

y1 = 0 y2 =
−4

2x− 1

Figure 3 illustrates how theses invariant solution curves exits in vector �eld (1, y
2

2 ) in a way that no �ow
curve cross them. In Figure 3 red curves represents the invariant solution curve y1, blue curves represents
the invariant solution curve y2 and the black curves represent �ow curves.
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Figure 3: vector �eld (1, y
2

2 ) with �ow curves and curves y = 0 , y = −4
2x−1 .

6.1.2 Method 2 [Using Invariant Curves]

The concept of applying invariant curves to get general solutions is given in [20] [19]. In this session we link
de�nitions and theorems including fundamental theorem of Lie,taken from di�erent references to present all
the steps of applying this concept to NODEs as a complete method. In this method �rst we obtain two
di�erent sets of in�nitesimals for the given NODE by solving symmetry condition 19 . Then one set of
in�nitesimals are applied to 10 to obtain invariant curves and remaining set is applied to �rst fundamental
theorem of Lie to get the corresponding symmetry group. Then we obtain the exact solution by applying
the symmetry group to the invariant curve.

Example 6.2. For this example a di�erential equation is taken from the exercises of [17] to obtain general
solution using invariant solution curves.
Consider the NODE.

dy

dx
=
y

x
+

x2

x+ y

It has two di�erent Lie symmetry groups with di�erent tangent vector �elds (1, yx) and (0, −(2x3−2xy−y2)
x+y ).

These di�erent sets of in�nitesimals can be obtained by solving linearized symmetry condition with two
di�erent assumptions for the form of the in�nitesimals or using Maple [28, 29].
We can �nd the Lie symmetry group whose tangent vector �led is (1, yx) = (ξ(x, y), η(x, y)) using the First
fundamental theorem of Lie.

Let v∗ = ψ(v, ε) be a Lie symmetry group whose tangent vector �eld is (1, yx) where v
∗ = (x∗, y∗), v =

(x, y) and ε is a real parameter. By 6

dx∗

dε
= ξ(x∗, y∗)

dy∗

dε
= η(x∗, y∗)

We can obtain x∗ and y∗ by solving above two ODEs

dx∗

dε
= ξ(x∗, y∗) = 1∫

dx∗ =

∫
dε

x∗ + c(x, y) = ε
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v∗ = v when ε = 0.Hence x∗ = x when ε = 0 .
Then

x+ c(x, y) = 0

c(x, y) = −x

Therefore

x∗ − x = ε

x∗ = x+ ε

Similarly we can �nd y∗

dy∗

dε
= η(x∗, y∗) =

y∗

x∗∫
1

y∗
dy∗ =

∫
1

x+ ε
dε

ln(y∗) + c(x, y) = ln(x+ ε)

v∗ = v when ε = 0.Hence y∗ = y when ε = 0. Using this initial condition we can obtain

c(x, y) = ln(
x

y
)

Hence

ln(y∗) + ln(
x

y
) = ln(x+ ε)

y∗ =
(x+ ε)y

x

Next we �nd the invariant curves of the given NODE under the Lie symmetry group whose tangent vector

�eld is (0, −(2x3−2xy−y2)
x+y ) using 10.

−(2x3 − 2xy − y2)

x+ y
− 0(

y

x
+

x2

x+ y
) = 0

−2x3 + 2xy + y2

x+ y
= 0

Then the invariant solution curves are given by

y1 = −x+ (
√
1 + 2x)x y2 = −x− (

√
1 + 2x)x

Under transformed variables x∗, y∗ solution curves become

y∗ = −x∗ + (
√
1 + 2x∗)x∗ y∗ = −x∗ − (

√
1 + 2x∗)x∗

Consider the solution curve y∗ = −x∗ + (
√
1 + 2x∗)x∗.

(x+ ε)y

x
= −(x+ ε) + (

√
1 + 2(x+ ε))(x+ ε)

y = (−1 +
√
1 + 2ε+ 2x)x

Similarly we can obtain y = (−1−
√
1 + 2ε+ 2x)x using the invariant curve y = −x− (

√
1 + 2x)x.

Let c = ε.Then the a general solution is given by

y = (−1±
√
1 + 2c+ 2x)x , c ∈ R
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Example 6.3. For this example a di�erential equation is taken from the exercises of [17] to obtain general
solution using invariant solution curves.
Consider the NODE

dy

dx
=

1− y − 2xy2

x(2xy + 1)

It has two di�erent Lie symmetry groups with di�erent tangent vector �elds (1,− y
x) and (0, xy

2+y−1
2xy+1 ). These

di�erent sets of in�nitesimals can be obtained by solving linearized symmetry condition with two di�erent
assumptions for the form of the in�nitesimals or using Maple [28, 29]. We can �nd the Lie symmetry group
whose tangent vector �led is (1,− y

x) = (ξ(x, y), η(x, y)) using the �rst fundamental theorem of Lie.
Let v∗ = ψ(v, ε) be a Lie symmetry group of the NODE whose tangent vector �eld is (1, yx) where

v∗ = (x∗, y∗), v = (x, y) and ε is a real parameter. By 6

dx∗

dε
= ξ(x∗, y∗)

dy∗

dε
= η(x∗, y∗)

Therefore we can obtain x∗ and y∗ by solving above two ODEs.

dx∗

dε
= ξ(x∗, y∗) = 1∫

dx∗ =

∫
dε

x∗ + c(x, y) = ε

x∗ = x when ε = 0 . Then

x+ c(x, y) = 0

c(x, y) = −x

Hence

x∗ − x = ε

x∗ = x+ ε

Similarly we can �nd y∗

dy∗

dε
= η(x∗, y∗) = −y

∗

x∗

−
∫

1

y∗
dy∗ =

∫
1

x+ ε
dε

−ln(y∗) + c(x, y) = ln(x+ ε)

y∗ = y when ε = 0.Using this initial value we can obtain

c(x, y) = ln(xy)

Hence

−ln(y∗) + ln(xy) = ln(x+ ε)

y∗ =
xy

(x+ ε)

Then we can �nd the invariant curves of the given NODE under the Lie symmetry group whose tangent

vector �eld is (0, xy
2+y−1
2xy+1 ) using theorem 2.12.

xy2 + y − 1

2xy + 1
− 0(

y

x
+

x2

x+ y
) = 0

xy2 + y − 1

2xy + 1
= 0
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Then the invariant solution curves are given by

y =
−1 +

√
1 + 4x

2x
y =

−1−
√
1 + 4x

2x

Under transformed variables x∗, y∗ solution curves become

y∗ =
−1 +

√
1 + 4x∗

2x∗
y∗ =

−1−
√
1 + 4x∗

2x∗

Consider the solution curve y∗ = −1+
√
1+4x∗

2x∗ .

xy

x+ ε
=

−1 +
√

1 + 4(x+ ε)

2(x+ ε)

y =
−1 +

√
1 + 4ε+ 4x

2x

Similarly we can obtain y = −1−
√
1+4ε+4x
2x using the invariant curve y = −1−

√
1+4x

2x .
Let c = ε. Then the a general solution is given by

y =
−1±

√
1 + 4c+ 4x

2x
, c ∈ R

6.2 Second and Higher Order NODEs

In this session we use Lie symmetry groups of higher order NODEs to reduce the order [17], [21] and we use
one of two methods presented above to solve the reduced NODE.

The linearized symmetry condition 21 is used to �nd the in�nitesimals of Lie symmetry group that
admitted by the given NODE. Explicit formulas for the in�nitesimals ηk (k= 1,2,3...) de�ned in 14 are
required to apply for the equation 21. Therefore we can use theorem 3.3 to obtain explicit formulas for ηk.

Since in this thesis Lie symmetry groups are applied only up to second order NODEs we �nd explicit
formals only for η1 and η2.

By theorem 3.3

η1 =
Dη

Dx
− y

1

Dξ(x, y)

Dx

=
∂η

∂x
+ y

1

∂η

∂y
− y

1
(
∂ξ

∂x
+ y

1

∂ξ

∂y
)

= ηx + y
1
ηy − y

1
(ξx + y

1
ξy)

η1 = ηx + (ηy − ξx)y
1
− ξy(y

1
)2 (22)

Similarly we can obtain the explicit formula for η2

η2 = ηxx + (2ηxy − ξxx)y
1
+ (ηyy − 2ξxy)(y

1
)2 − ξyy(y

1
)3 + (ηy − 2ξx)y

2
− 3ξyy

1
y
2

(23)

Example 6.4. For this example a second order NODE is taken from the exercises of [17]. Consider the
second order NODE

d2y

dx
=

−2x

y2
(
dy

dx
)3 = f(x, y, y

1
)

The linearized symmetry condition 21 becomes

η2(x, y
1
, y
2
)− [ξ(x, y)

∂f

∂x
+ η(x, y)

∂f

∂y
+ η1(x, y, y

1
)
∂f

∂y
1

] = 0
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By substituting formulas 22 and 23 we can obtain

ηxx + (2ηxy − ξxx)y
1
+ (ηyy − 2ξxy)(y

1
)2 − ξyy(y

1
)3 + (ηy − 2ξx − 3ξyy

1
)y
2
− [ξ(x, y)∂f∂x + η(x, y)∂f∂y + (ηx + (ηy −

ξx)y
1
− ξy(y

1
)2)∂f∂y

1

] = 0

By substituting y
2
= f = −2x

y2
(y′)3 ,∂f∂y = 4x

y3
(y′)3 , ∂f

∂x = −2(y′)3

y2
, ∂f

∂y
1

= −6x(y′)2

y2
and y

1
= y′ we can obtain.

ηxx+(2ηxy−ξxx)y′+(ηyy−2ξxy)(y
′)2−ξyy(y′)3+(ηy−2ξx−3ξyy

′)(−2x
y2

(y′)3)−[ξ(x, y)(−2(y′)3

y2
)+η(x, y)(4x

y3
(y′)3)+

(ηx + (ηy − ξx)y
′ − ξy(y

′)2)(−6x(y′)2

y2
)] = 0

Then by comparing powers of y′ we can obtain following equations called determining equations.

−(ξyy)y
3 − 2ξxxy + 4ηyxy + 2ξy − 4xη = 0

(ηyy)y
3 − 2(ξxy)y

3 + 6ηxxy = 0

2(ηxy)y
3 − (ξxx)y

3 = 0

(ηxx)y
3 = 0

By solving these set of determining equations we can obtain general expressions for ξ(x, y) and η(x, y). we
can use Maple to solve these set of determining equations for ξ(x, y) and η(x, y) [10] [30] [31] [7]

ξ(x, y) = 2x2yc1 −
x2c2
y2

+ (2y3c4 −
c5
y3

+ c6)x+ c7y
2 +

c8
y

η(x, y) =
c4y

6 + c1xy
4 + c3y

3 + c2xy + c5
y2

Where c1, c2, c3, c4, c5, c6, c7, c8 ∈ R. Then by changing the constants c1, c2, c3, c4, c5, c6, c7 and c8 we can
obtain di�erent sets of in�nitesimals for the given ODE. Let c1 = 0, c2 = 0, c3 = 0, c4 = 0, c5 = 0, c6 =
0, c8 = 0 and c7 = 1. Then the in�nitesimals becomes

ξ(x, y) = y2 η(x, y) = 0

Then we can conclude that the given ODE has a Lie symmetry group whose tangent vector �eld is (y2, 0).
Then the in�nitesimal generator is given by

X = y2
∂

∂x

By theorem 2.11 there exists canonical coordinates (r(x,y),s(x,y)) such that the corresponding Lie symmetry

group becomes

r∗ = r s∗ = s+ ε

Where ε is areal parameter. Then the equations 8 and 9 become

y2
∂r

∂x
= 0

y2
∂s

∂x
= 1

Then we can obtain the canonical coordinates (r(x, y), s(x, y)) = (y, x
y2
) of corresponding Lie symmetry

group by solving above two equations.

By theorem 3.4 we can convert the given second order ordinary di�erential equation into �rst order
ordinary di�erential equation by changing the coordinates x, y into canonical coordinates and making ds

dr = u.
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Reduced ODE can be obtain by converting each term of d2y
dx = −2x

y2
( dydx)

3 into canonical coordinates.

dy

dx
=
dy

dr
/
dx

dr

=
1

2rs+ r2s′

d2y

dx2
=
dy′

dr
/
dx

dr

=
−(2s+ 2rs′ + 2rs′ + r2s′′)

(2rs+ r2s′)3

Therefore the ODE d2y
dx = −2x

y2
( dydx)

3 becomes

−(2s+ 2rs′ + 2rs′ + r2s′′)

(2rs+ r2s′)3
=

−2r2s

r2(2rs+ r2s′)3

2s+ 2rs′ + 2rs′ + r2s′′ = 2s

s′′ =
−4s′

r

Then we can reduce the order using s′ = u

u′ =
−4u

r

Then by integration we can obtain the solution

u =
c

r4
, c ∈ R

Since u = s′
ds

dr
=

c

r4

Then by integration we can obtain the solution

s =
−c
3r3

+ c9 , c9 ∈ R

By changing canonical coordinates to original coordinates (x, y) we can obtain the general solution

x

y2
=

−c
3(y3)

+ c9

Example 6.5. For this example a second order NODE is taken from the exercises of [20]. Consider the
following second order NODE.

d2y

dx2
=

3

2y
(
dy

dx
)2 + 2y3 = f(x, y, y

1
)

The linearized symmetry condition 21 becomes

η2(x, y
1
, y
2
)− [ξ(x, y)

∂f

∂x
+ η(x, y)

∂f

∂y
+ η1(x, y, y

1
)
∂f

∂y
1

] = 0

By substituting formulas formulas 22 and 23 we can obtain

ηxx + (2ηxy − ξxx)y
1
+ (ηyy − 2ξxy)(y

1
)2 − ξyy(y

1
)3 + (ηy − 2ξx − 3ξyy

1
)y
2
− [ξ(x, y)∂f∂x + η(x, y)∂f∂y + (ηx + (ηy −

ξx)y
1
− ξy(y

1
)2)∂f∂y

1

] = 0
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By substituting y
2
= f = 3

2y (y
′)2 + 2y3,∂f∂y = −3(y′)2

2y2
+ 6y2 ,∂f∂y

1

= −3y′

y and y
1
= y′ we can obtain

ηxx+(2ηxy − ξxx)y
′+(ηyy − 2ξxy)(y

′)2− ξyy(y
′)3+(ηy − 2ξx− 3ξyy

′)( 3
2y (y

′)2+2y3)− [η(x, y)(−3y′2

2y2
+6y2)+

(ηx + (ηy − ξx)y
′ − ξy(y

′)2)(−3y′

y )] = 0

Then by comparing powers of y′ we can obtain following equations called determining equations.

−2ξyyy
2 − 3ξyy = 0

−4ξx,yy
2 + 2ηyyy

2 − 3ηyy + 3η = 0

−12ξyy
5 + 4ηxyy

2 − 2ξxxy
2 − 6ηxy = 0

−8ηxy
5 + 4ηxy

5 − 12ηy4 + 2ηxxy
2 = 0

By solving these set of determining equations we can obtain general expressions for ξ(x, y) and η(x, y). we

can use Maple to solve these set of determining equations for ξ(x, y) and η(x, y) [10] [30] [31] [7]

ξ(x, y) =
1

2
c1x

2 + c2x+ c3

η(x, y) = −(c1x+ c2)y

where c1, c2, c3 ∈ R.

Then by changing the constants c1, c2 and c3 we can obtain di�erent sets of in�nitesimals for the given ODE.
Let c1 = 0, c2 = 0 and c3 = 1. Then the in�nitesimals become

ξ(x, y) = 1 η(x, y) = 0

Then we can conclude that the given ODE has a Lie symmetry group whose tangent vector �eld is (1, 0).
Then the in�nitesimal generator is given by

X = 1
∂

∂x

By theorem 2.11 there exists canonical coordinates (r(x,y),s(x,y)) such that the corresponding Lie symmetry
group becomes

r∗ = r s∗ = s+ ε

ε is areal parameter. Then the equations 8 and 9 become

1
∂r

∂x
= 0

1
∂s

∂x
= 1

Then we can obtain the canonical coordinates of corresponding Lie symmetry group by solving above two
equations . (r(x, y), s(x, y)) = (y, x)

By theorem 3.4 we can convert the given second order ordinary di�erential equation into �rs order ordinary
di�erential equation by changing the coordinates x, y into canonical coordinates and making ds

dr = u.

Reduced ODE can be obtain by converting each term of d2y
dx2 = 3

2y
dy
dx + 2y3 by canonical coordinates.

dy

dx
=
dy

dr
/
dx

dr

=
1

s′

d2y

dx2
=
dy′

dr
/
dx

dr

=
−s′′

s′3
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Therefore the ODE d2y
dx2 = 3

2y
dy
dx + y3 becomes

−s′′

(s′)3
=

3

2r(s′)2
+ 2r3

s′′ = −3s′

2r
− (s′)3r3

Then we can reduce the order using s′ = u

u′ = −3u

2r
− 2u3r3

To get the exact solution we can solve the �rst order ODE u′ = −3u
2r − 2u3r3 using Lie symmetry method.

Consider the �rst order ordinary di�erential equation u′ = −3u
2r − 2u3r3. It has a Lie symmetry group

whose tangent vector �eld is (ξ(r, u), η(r, u)) = (r,−2u). These in�nitesimals can be obtained by solving the
linearized symmetry condition of u′ or using maple [28, 29].Then the in�nitesimal generator is given by

X = r
∂

∂r
− 2u

∂

∂u

By theorem 2.11 there exists canonical coordinates (p(x,y),q(x,y)) such that the Lie symmetry group becomes

p∗ = p

q∗ = q + ε

Whereε is a real parameter.
Then the equations 8 and 9 become

r
∂p

∂r
− 2u

∂p

∂u
= 0

r
∂q

∂r
− 2u

∂q

∂u
= 1

Then we can �nd independent canonical coordinate p by solving the characteristic equation

dr

r
=

du

−2u∫
1

r
dr =

∫
1

−2u
du

ln(r−2) + ln(c) = ln(u) , c ∈ R
c = r2u

Then p(r, u) = c = r2u. we can �nd the dependent canonical coordinate q , by solving the characteristic
equation .

dr

r
=

du

−2u
= dq

q =

∫
dq =

∫
dr

r

q = ln(r) + c1 c1 ∈ R
Hence the canonical coordinates are given by (p(r, u), q(r, u)) = (r2u, ln(r)). Then we can convert the ODE
into variable separable form using these canonical coordinates. By total derivative operator

dq

dp
=
qr + u′qu
pr + u′pu

=
1
r

2ru+ (−3u
2r − 2r3u3)r2

=
2

r2u− 4(r2u)3

=
2

p− 4p3
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By integration we can obtain the solution

q = −ln(2p− 1)− ln(2p+ 1) + 2ln(p) + c , c ∈ R

By changing canonical coordinates to coordinates (r, u) we can obtain the general solutions.

u = ± 1√
c1r + 4r2r

, c1 ∈ R

Consider the general solution u = 1√
c1r+4r2r

. Since u = ds
dr

ds

dr
=

1√
c1r + 4r2r

Then by integration we can obtain

s = − 2(4x+ c1)

c1
√
x(4x+ c1)

+ c2 , c2 ∈ R

Then by changing canonical coordinates (r, s) to original coordinates (x, y), we can obtain the general solution
to the Given second order non linear di�erential equation .

y =
4c1

c21c
2
2 − 2c21c2x+ c21x

2 − 16

Similarly we can obtain this general solution using u = − 1√
c1r+4r2r

.

According to theorem 3.4 we are able to reduce the order of higher order NODEs in the same way that
we used in examples 6.5 and 6.4.

7 Discussion

The applications of Lie symmetry analysis have been used in many research for solving nonlinear partial
di�erential equations found in physical problems [2, 26, 4, 7, 3, 6, 32, 8] and for mathematical Models such
as SIR models [33]. But in this project, we put a signi�cant emphasis on discussing the idea of symmetries
of ODEs and demonstrate how their features can be used to obtain the exact solutions. For that, we have
discussed the relation between vector �elds and the symmetries of ODEs and we have illustrated symmetries
and their vector �elds graphically in Figure 1, Figure 2 and Figure 3. Moreover, we have explained the
theorems and de�nitions of Lie symmetry analysis from di�erent references and combined them to present,
three di�erent complete solution methods.

In example 6.1 we have obtain general solutions for NODEs by converting them into variable separable
form using canonical coordinates of their Lie symmetry groups. Although we are able to apply this method
to any �rst order NODE, we have to �nd appropriate assumption to the form of the in�nitesimals to solve
the symmetry condition. For some NODEs �nding these correct assumptions can be very hard and complex.

In examples 6.2 and 6.3 we have solved NODEs using invariant solution curves under Lie symmetry
groups. In this method, we have to �nd two di�erent sets of assumptions for the in�nitesimals, since
we use two di�erent sets of in�nitesimals. Furthermore, invariant curves that we obtain using one set of
in�nitesimals can't be invariant curves under the OLGT that we obtain by applying the remaining set of
in�nitesimals to the �rst fundamental theorem of Lie. Moreover, we have to �nd appropriate Lie symmetry
groups which give real invariant solutions, because for some NODEs most of its Lie symmetry groups give
complex invariant solutions. Therefore we have to �nd assumptions in a way that all these conditions are
satis�ed. A related analysis of invariant curves and their applications for NODEs have been presented in
[19]. In [19] invariant curves have been applied to the given exact form of di�erent symmetries. But in this
paper, we have demonstrated how to obtain the exact form of symmetries using the Fundamental theorem of
Lie in example 2.8 under theorem 5. And we have combined the fundamental theorem of Lie , the Linearized
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symmetry condition and the idea of invariant curves to present a complete solution method. In [19] invariant
solution curves have been illustrated with the family of solution curves. In the current project, we plotted
the obtained invariant solution curves with the related symmetries(�ow curves) and their vector �elds, in
Figure 2and Figure 2. From Figure 1 and Figure 2, we have graphically illustrated how some particular
solution curves of an ODE exit in a way that no �ow curves cross them, which shows the underlying meaning
theorem 2.12.

In examples 6.5 and 6.4 order of the seconded order ODEs have been reduced using canonical coordinates
of Lie symmetry groups. If the reduced second Order NODE is a �rst-order NODE, then we are able to
use one of the �rst two methods to solve that NODE as we demonstrated in example 6.5 . Similarly, we
can reduce the order of third or higher-order NODEs, since the order reduction of NODE has been de�ned
for any order NODE. Then, if the reduced NODE is also a NODE, we are able to go towards the exact
solution using these given three methods. In this project Maple software has been used to solve determining
equations in examples 6.5 and 6.4.

It is obvious that the main challenge of applying these methods is to �nd the appropriate assumptions for
the form of in�nitesimals. Although we are able to use the PDEtools package on MAPLE to check whether
the assumptions are correct, �nding an assumption that satis�es all the conditions under method 2, is not
an easy task in general.

8 Conclusion

NODEs are widely used in many disciplines and approximation methods are used to get the approximated
solutions due to the lack of techniques to get their general solutions. Therefore the main objective of this
project is to present how to obtain exact solutions of NODEs using their Lie symmetries. In examples
6.1,6.1.1 and 6.2 we have demonstrated how to use symmetries of �rst-order NODEs to successfully obtain
their general solutions under two di�erent methods, but the second method in which we use invariant cures is
generally more hard and complex task than method1 due to the requirement of di�erent sets of in�nitesimals.
In examples 6.5 and 6.4 we have demonstrated how to reduce the order of second-order NODE using the
prolongation of Lie symmetries. Using these three methods we are able to solve the third or higher-order
NOSEs. In all these three methods, the standard types of ODEs have not been taken into consideration.
Therefore we are able to apply these methods for any unfamiliar type of ODE which is not �t into standard
ODE types such as exact, homogeneous, separable, etc. But �nding in�nitesimals may be a challenging task
for some ODEs. Thus we can consider these symmetry methods as powerful solution techniques for solving
NODEs, which give exact general solutions. This project can be extended for �nding exact solutions for
nonlinear partial di�erential equations using Lie Algebra.
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