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1 Introduction 

Generalized integro-differentiation appears to be a better name, but fractional calculus (FC) persisted for 

historical reasons [1]. The FC extends the standard differential calculus to non-integer orders, whether real 

or complex. Until the past few decades, when the research community began to notice its excellent 

performance for describing a wide range of natural and artificial processes, this scientific tool was mostly 

used in pure mathematics. Recent trends in FC and a thorough presentation of current knowledge can be 

found in [16]. Physical phenomena can be articulated with the aid of the theory of fractional order 
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derivatives and integrals, and fractional techniques can also successfully simulate real-life phenomena that 

depend not only on the present but also on the past time history [1]. Therefore, several methods [2, 3, 4, 5, 

and 10] are still being developed to solve fractional differential equations in order to achieve an exact and 

numerical solution. Fractional notions have been employed as a tool in domains including engineering, 

economics, physics, and chemistry. Today, research and development on fractional calculus are being 

applied to the study of differential equations, enabling the ordering of both ordinary and partial differential 

equations by any number [1]. The applications of fractional differential equations in fields including biology, 

economics, the oil industry, finance, engineering, and a wide range of other fields have been the primary 

drivers of research in this field [6, 8, 9, 11, 12, 13, 14 and 15]. In this study, we solve linear fractional ordinary 

differential equations with constant and variable coefficients using the Laplace transform. The outcomes 

are then simplified and stated in terms of Mittag-Leffler functions.  

2 Materials and Methods 

For the assessment of the fractional calculus [1,2,3, and 7] that will be employed in this study, a few 

definitions and mathematical foundations are presented in this section. Mathematically, the Riemann-

Liouville fractional integral of order 𝑎 is defined as: 

2.1 The Riemann-Liouville integral is defined as 

𝐼𝑎𝑓(𝑥) =
1

Г(𝑎)
∫ 𝑓(𝑡)(𝑥 − 𝑡)𝑎−1𝑑𝑡

𝑥

𝑎
        (1) 

2.2 Laplace Transform of the Fractional Integral 

2.2.1 Laplace Transform 

The Laplace transform of a function f(t), denoted by F(s), is defined by the equation  

𝐹(𝑠)  =  (𝐿 𝑓 )(𝑠)  =  𝐿{ 𝑓 (𝑡);  𝑠}  =  ∫ 𝑓(𝑡)𝑒−𝑠𝑡𝑑𝑡
∞

0
                      (2) 

𝐼0 𝑥
−𝛼𝑓(𝑥) =

1

Г(𝑎)
∫ 𝑓(𝑡)(𝑥 − 𝑡)𝑎−1𝑑𝑡

𝑥

𝑎
        (3) 

Application of convolution theorem of the Laplace transform gives 

𝐿{ 𝐼0 𝑥
−𝛼𝑓(𝑥); 𝑠} = 𝐿{

𝑡𝛼−1

Г(𝑎)
} 𝐿{𝑓(𝑡); 𝑠} = 𝑠−𝛼𝐹(𝑠)      (4) 

2.3 Caputo derivative 

If m is the smallest integer greater than α, then Caputo fractional derivative of order α >0 is defined as  

𝐷∗
𝛼𝑓(𝑥) = 𝐽𝑚−𝛼𝑓𝑚(𝑥) with   𝑚 − 1 < 𝛼 < 𝑚,  

given 

𝐷∗
𝛼𝑓(𝑡) = {

1

Г(𝑚−𝛼)
[∫

𝑓(𝑚)(𝜏)

(𝑥−𝜏)𝛼+1−𝑚 𝑑𝜏
𝑥

0
] ,   𝑚 − 1 < 𝛼 < 𝑚,

𝑑𝑚

𝑑𝑥𝑚 𝑓(𝑥),                                                      𝛼 = 𝑚.
                         (5) 

2.4 Laplace transform of Caputo fractional derivative 

𝐷𝑎 𝑥
𝛼𝑓(𝑥)= 𝐼𝑎 𝑥

𝑛−𝛼 
𝑑𝑛

𝑑𝑥𝑛 𝑓(𝑥)= 𝐷𝑎 𝑡
−(𝑛−𝛼)

𝑓𝑛(𝑡)       (6) 
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2.5 Mittag-Leffler Function 

The special function of Mittag-Leffler for 𝑎, 𝛽 ∈ 𝕔, 𝑅𝑒(𝑎), 𝑅𝑒(𝛽) > 0 is defined as 

𝐸𝑎,𝛽(𝑧) = ∑
𝑍𝑘

𝛤(𝑎𝑘+𝛽)
∞
𝑘=0                                                                (7) 

The function 𝐸(𝑡, 𝛼, 𝑎) is used to solve differentials equations of fractional order which is defined by: 

𝐸(𝑡, 𝛼, 𝑎) = 𝑡𝛼 ∑
(𝑎𝑡)𝑘

𝛤(𝑘+𝛼+1)
= 𝑡𝛼∞

𝑘=0 𝐸1,𝛼+1(𝑎𝑡)                                                         (8) 

Property 1: 𝐸(𝑡, 𝛼, 𝑎) =
1

𝛤(𝛼)
∫ 𝜉𝛼−1𝑒𝑎(𝑡−𝜉)𝑑𝜉

𝑡

0
    

Property 2: ℒ−1 [
𝑆−(𝛼−𝛽)

𝑆𝛽−𝑎
] = 𝑡𝛼−1𝛽𝛼(𝑎𝑡𝛽),            |𝑆𝛽 − 𝑎| < 1     

Corollary 1: 

i. 𝐸
1,

3

2

(𝑎𝑡) =
𝑒𝑎𝑡

√𝑎𝑡
erf (√𝑎𝑡)      

ii. 𝐸
1,

1

2

(𝑎𝑡) =
1

√𝜋
+ √𝑎𝑡𝑒𝑎𝑡𝑒𝑟𝑓(√𝑎𝑡)       

iii. 𝐸
1,

5

2

(𝑎𝑡) =
1

𝑎𝑡
[

𝑒𝑎𝑡

√𝑎𝑡
erf(√𝑎𝑡) −

2

√𝜋
]     

iv. 𝐸
1,−

1

2

(𝑎𝑡) =
−1

2√𝜋
+ (𝑎𝑡)(

1

√𝜋
+ √𝑎𝑡𝑒𝑎𝑡erf (√𝑎𝑡))      

Corollary 2: 

i. ℒ−1 [
1

𝑆𝛼(𝑆−𝑎)2] = 𝑡𝐸(𝑡, 𝛼, 𝑎) − 𝛼𝐸(𝑡, 𝛼 + 1, 𝑎) 

ii. ℒ−1 [
1

𝑆𝛼(𝑆−𝑎)3] =
1

2
𝑡2𝐸(𝑡, 𝛼, 𝑎) − 𝛼𝑡𝐸(𝑡, 𝛼 + 1, 𝑎) +

𝛼(𝛼+1)

2
 𝐸(𝑡, 𝛼 + 2, 𝑎)  

3 Result and Discussion 

Example 1: Consider the following initial value problem in the case of the inhomogeneous Bagley-Tonick 

equation 

𝐷2𝑦(𝑥) + 𝐷
3
2(𝑥) + 𝑦(𝑥) = 1 + 𝑥 

  

𝑦(0) = 𝑦′(0) = 1 

Using Laplace transform    

𝑠2𝐹(𝑠) − 𝑠𝑦(0) − 𝑦′(0) +
𝑠2𝐹(𝑠) − 𝑠𝑦(0) − 𝑦′(0)

𝑠
1
2

+ 𝐹(𝑠) =
1

𝑠
+

1

𝑠2
 

Considering the condition  

𝑦(0) = 𝑦′(0) = 1 

We have 

𝐹(𝑠) = (
1

𝑠
+

1

𝑠2
) 
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Example 2: This problem covers the inhomogeneous linear equation 

𝐷𝛼𝑦(𝑥) + 𝑦(𝑥) =
2𝑥2−𝛼

𝛤(3 − 𝛼)
−

𝑥1−𝛼

𝛤(2 − 𝛼)
+ 𝑥2 − 𝑥 

𝑦(0) = 0, 0 < 𝛼 ≤ 1 

Using the Laplace transform, 𝐹(𝑠) is obtained as follows  

𝑠𝐹(𝑠) − 𝑦(0)

𝑠1−𝛼
=

2

𝑠3−𝛼
−

1

𝑠2−𝛼
− 𝐹(𝑠) +

2

𝑠3
−

1

𝑠2
 

𝐹(𝑠) =
2

𝑠3
−

1

𝑠2
 

Example 3: Consider the following fractional ordinary differential equation with variable coefficients 

𝑡𝐷𝛼𝑥(𝑡) + 𝐷𝛼−1𝑥(𝑡) + 𝑡𝑥(𝑡) = 0            𝑥(0) = 1, 1 < 𝛼 ≤ 2 

Application of Laplace transform gives 

−
d

ds
ℒ{𝑡𝐷𝛼𝑥(𝑡)} + ℒ{𝐷𝛼−1𝑥(𝑡)} + ℒ{𝑡𝑥(𝑡)} = 0 

⇒ −
𝑑

𝑑𝑠
[𝑠𝛼𝑥̅(𝑠) − ∑ 𝑠𝑘𝐷𝛼−𝑘−1𝑥(0)

1

𝑘=0

] + [𝑠𝛼−1𝑥̅(𝑠) − ∑ 𝑠𝑘𝐷𝛼−𝑘−2𝑥(0)

0

𝑘=0

] 

−
𝑑𝑥̅(𝑠)

𝑑𝑠
= 0 

∴ 𝑥(𝑡) = ℒ−1 [𝑐(1 + 𝑠𝛼)
(1 − 𝛼)

𝛼
] 

As special case we take 𝛼 = 2 then we have 

𝑥(𝑡) = ℒ−1 [
𝑐

√1 + 𝑠2
] = 𝑐𝐽0(𝑡) 

Example 4: Consider the homogenous equation. 

(𝐷1 − 3𝐷
1
2 + 2𝐷0) 𝑥(𝑡) = 0 

Solution 

By applying Laplace transform we have 

ℒ{𝐷𝑥(𝑡)} − 3ℒ {𝐷
1
2𝑥(𝑡)} + 2ℒ{𝐷0𝑥(𝑡)} = 0 

𝑠𝑥̅(𝑠) − 𝑥(0) − 3ℒ {𝐷 (𝐷−
1
2𝑥(𝑡))} + 2𝑥̅(𝑠) = 0 

𝑐 (
2

𝑠 − 4
+

1

𝑠−
1
2(𝑠 − 4)

−
1

𝑠 − 1
−

1

𝑠−
1
2(𝑠 − 1)

) 

Where 

𝑐 = [𝑥(0) − 3𝐷−
1
2𝑥(0)] 
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From corollary (1) we obtain the solution as follows 

∴ 𝑥(𝑡) = 𝑐 [2𝑒4𝑡 − 𝑒𝑡 + 𝐸 (𝑡, −
1

2
, 4) − 𝐸 (𝑡, −

1

2
, 1)] 

𝑐[2𝑒4𝑡 𝑒𝑟𝑓𝑐(−2√𝑡) − 𝑒𝑡(𝑒𝑟𝑓 𝑐(−√𝑡))] 

Example 5: Consider the inhomogeneous initial value problem. 

(𝐷1 − 2𝐷
1
2 + 𝐷0) 𝑥(𝑡) = 𝑒𝑡                  𝑥(0) = 1 

Solution 

We applied the Laplace transform to obtain: 

𝑠𝑥̅(𝑠) − 𝑥(0) − 2𝑠
1
2𝑥̅(𝑠) + 2𝑥(0) + 𝑥̅(𝑠) =

1

𝑠 − 1
 

From property 2, and corollary 2 we have 

x(t) =
1

4
𝑒𝑡 + (𝑐 +

3

4
) ℒ−1 {

1

𝑠−1(𝑠 − 1)2
} + (

3

2
+ 2𝑐) ℒ−1 {

1

𝑠−
1
2(𝑠 − 1)2

} 

(
3

4
+ 𝑐) t𝑒𝑡 +

1

2
ℒ−1 {

1

𝑠−
3
2(𝑠 − 1)3

} +
3

2
ℒ−1 {

1

𝑠−1(𝑠 − 1)2
} 

3

2
ℒ−1 {

1

𝑠−
1
2(𝑠 − 1)3

} +
1

2
𝑡2𝑒𝑡 

Applying the initial condition 𝑥(0) = 1 gives c = 0 and by substituting the value of 𝑐 we have: 

𝑥(𝑡) =
𝑒𝑡

4
(3𝑡2 + 12𝑡 + 4) +

√𝑡

4
(9 + 3𝑡)𝐸

1,
1
2

(𝑡) +
√𝑡

16
(15 + 12𝑡)𝐸

1,
3
2

(𝑡) +
√𝑡

4
𝐸

1,−
1
2

(𝑡)

−
3

16
𝑡

3
2𝐸

1,
5
2

(𝑡) 

from corollary 2 we get the final solution as follows 

𝑥(𝑡) =
1

16
{4(3𝑡2 + 12𝑡 + 4)𝑒𝑡 + (15 + 48𝑡 + 16𝑡2 − 3𝑡3)𝑒𝑡𝑒𝑟𝑓(√𝑡) + 2√

𝑡

𝜋
(3𝑡

3
2 + 8𝑡 + 17)} 

4 Conclusion 

The Laplace transformation method has been successfully applied to find the exact solution of linear 

fractional ordinary differential equations also fractional ordinary differential equations, with variable 

coefficients. Without assumptions, we applied our method directly. In this paper, fractional order calculus 

is treated more suggestively rather than rigorously. The examples presented show the effectiveness of 

Laplace transform approach of solving Fractional Order calculus-based models, whose results demonstrate 

the importance of Fractional Order Calculus.  
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