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1 Introduction 

This paper presents an approach to fractional integration which aims at introducing an algorithm for solving 

integrals of non-integer order. Fractional integration is a branch of fractional calculus that investigates 

integrals of arbitrary real and complex order with their applications. Since the emergence of the idea of 

arbitrary integrals they have been lack of physical and geometric interpretation of this operator which many 

authors have attempted to provide, for this reason much efforts have been devoted to overcoming this 

challenge [1]. Methods are being developed to provide tools for solving such problems, by using the 

Riemann–Liouville approach it is convenient to approximate the fractional integral using generalized and 

modified trapezoidal rule.   

 In recent times, large number of scientific and engineering problems involves fractional calculus, the reason 

for this is that it provides more accurate models of systems under consideration, a praiseworthy attempt 

has been given by podlubny and others to develop interpretation of fractional integration and differentiation 

[1] - [4]. For instance, fractional calculus is applied to model the dynamics of interfaces between 

nanoparticles and substrates [5], economics [6], frequency dependent damping behavior of many 

viscoelastic materials [7], signal processing [8], continuum and statistical mechanics [9], and oscillation [10]. 

A B S T R A CT  

This paper presents a numerical technique for solving fractional 

integrals of functions by employing the trapezoidal rule in 

conjunction with the finite difference scheme. The proposed 

scheme is only a simple modification of the trapezoidal rule, in 

which it is treated as an algorithm in a sequence of small intervals 

for finding accurate approximate solutions to the corresponding 

problems. This method was applied to solve fractional integral of 

arbitrary order α > 0 for various values of alpha. The fractional 

integrals are described in the Riemann-Liouville sense. Figurative 

comparisons and error analysis between the exact value, two-

point and three-point central difference formulae reveal that this 

modified method is active and convenient. 
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In recent years considerable interest in fractional differential equation has been stimulated by the 

applications that it finds in the field of science, including numerical analysis, engineering, economics, 

biology, oil industry, finance and others [11] - [20].   Real life modeling of phenomenon having dependence 

not solely at the time instant, however additionally the previous time history can be successfully achieved 

by fractional calculus. Mathematical formulations of mentioned phenomena contain equations with 

fractional order, most of these kinds of equations are difficult to solve [21] and in some cases do not have 

exact analytic solutions, so approximation and numerical techniques must be used. For practical purposes 

however, analytical solutions are often insufficient. The history [22], challenges [23], methods [24] - [32] 

and progress [33] made in the field of fractional calculus are evident in many publications. The technique 

considered here can be utilized to approximate arbitrary integrals. The method given here can be used to 

compute such an approximation. This paper deals with the rationality of Modified Trapezoidal rule in 

conjunction with the finite difference scheme for solving fractional integral. Given that the interval [a,b] is 

subdivided into M subintervals [𝑥𝑘, 𝑥𝑘+1]  of width ℎ =
(𝑏−𝑎)

𝑀
 by using the equally spaced nodes 𝑥𝑘 = 𝑎 +

𝑘ℎ for 𝑘 = 0,1, … , 𝑀. The composite trapezoidal rule for M subintervals can be expressed in any of three 

equivalent ways:       

T(𝑓, ℎ) =
ℎ

2
∑ (𝑓

𝑀

𝑘=1
(𝑥𝑘−1) + 𝑓(𝑥𝑘)       (1) 

or 

𝑇(𝑓, ℎ) =
ℎ

2
(𝑓0 +2 𝑓1 +2 𝑓 2 + 2 𝑓 3+ …+2𝑓𝑚−2 + 2𝑓𝑚−1 + 𝑓𝑚)      (2) 

or        

T(𝑓, ℎ) =
ℎ

2
(𝑓(𝑎) + 𝑓(𝑏)) + ℎ ∑ 𝑓(

𝑀−1

𝑘=1
𝑥𝑘).      (3) 

This is an approximation to the integral of 𝑓(𝑥) over [a, b], and we write 

∫ 𝑓(𝑥) 𝑑𝑥 ≈ 𝑇(𝑓, ℎ).
𝑏

𝑎
      (4) 

1.1 Error Analysis 

If 𝑓(𝑥) ∈ 𝑪𝟐 [𝑥, 𝑦], then there is a value 𝜏 with 𝑥 < 𝜏 < 𝑦 so that the error term 𝐸(𝑓, ℎ) has 

the form  

𝐸(𝑓, ℎ) =
−(𝑦−𝑥)𝑓

(2)(𝜏)(ℎ2)

12
= 𝑂(ℎ2)                                 (5) 

In cases where the derivatives of 𝑓(𝑥) is known, the formula can be used to estimate the number 

of subintervals required to achieve a specified accuracy.  

where  

𝐸(𝑓, ℎ) = ∫ 𝑓(𝑥) 𝑑𝑥 − 𝑇(𝑓, ℎ).
𝑏

𝑎
          (6) 

2 Materials and Techniques  

In this area, we give some important definitions and properties of fractional calculus theory [34] and [35] 

which will be utilized further in this paper. 

Definitions 2.1: The Riemann–Liouville fractional integral operator 𝐽𝛼𝑓(𝑥) of order 𝛼 >  0  on the usual 

Lebesgue space 𝐿1[𝑎, 𝑏] is given by 

𝐽𝛼𝑓(𝑥) =
1

𝛤(𝛼)
∫ (𝑥 − 𝜏)𝛼−1𝑥

0
𝑓(𝜏)𝑑𝜏, 𝑥 > 0, 𝛼 > 0.           (7) 

Properties of the operator 𝐽𝛼and details are given below: 

For 𝛼, 𝛽, 𝑥 > 0 and 𝜆 > −1, we have  

(i)  𝐽𝛼𝐽𝛽 =𝐽𝛼+𝛽,          (8) 

(ii)  𝐽𝛼𝑥𝜆 =
𝛤(𝜆+1)

𝛤(𝛼+𝜆+1)
𝑥𝛼+𝜆,          (9) 

(iii)𝐽𝛼 cos(𝑎𝑥) =  𝑥𝛼 ∑
(−1)𝑘(𝑎𝑥)2𝑘

Г(𝛼+2𝑘+1)
∞
𝑘=0 ,        (10) 
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(iv)𝐽𝛼 sin(𝑎𝑥) =  𝑥𝛼 ∑
(−1)𝑘(𝑎𝑥)2𝑘+1

Г(𝛼+2𝑘+2)
∞
𝑘=0 ,        (11) 

(v)  𝐽𝛼𝑒𝑎𝑥 =  𝑥𝛼 ∑
(𝑎𝑥)𝑘

Г(𝛼+𝑘+1)
∞
𝑘=0 .         (12) 

Theorem 1: [34] suppose that  𝑓 ∈  𝑪𝟐[0, 𝑇],𝑓𝑘 is the piecewise linear interpolation for 𝑓 with nodes 

chosen at the 𝑡𝑗 = 𝑗ℎ with ℎ =
𝑇

𝑘
, 𝑗 = 0,1,2, … , 𝑘, then 

(i) ∫ (𝑡𝑘 − 𝑡)𝛼−1𝑡𝑘

0
𝑓𝑘(𝑡)𝑑𝑡 =  ∑ 𝑎𝑗,𝑘 . 𝑓(𝑡𝑖),𝑘

𝑗=0          (13) 

where 

𝑎𝑗,𝑘 =   
ℎ𝛼

𝛼(𝛼+1)
{

(𝑘 − 1)𝛼+1 − (𝑘 − 1 − 𝛼)𝑘𝛼,                                                    𝑗 = 0,

(𝑘 − 𝑗 + 1)𝛼+1 + (𝑘 − 𝑗 − 1)𝛼+1 − 2(𝑘 − 𝑗)𝛼+1, 1 ≤ 𝑗 ≤ 𝑘 − 1,
1                                                                                                          𝑗 = 𝑘,

 (14)  

(ii)|∫ (𝑡𝑘 − 𝑡)𝛼−1𝑓(𝑡)𝑑𝑡 −
𝑡𝑘

0
∑ 𝑎𝑗,𝑘 . 𝑓(𝑡𝑖)𝑘

𝑗=0 | ≤ 𝐶𝛼‖𝑓′′‖∞𝑡𝑘
𝛼ℎ2,            (15) 

for some constant depending on α. 

2.1 The Trapezoidal Rule 

A spontaneous approach of finding the area under the curve 𝑦 = 𝑓(𝑥) over [a, b] is by approximating that 

area with a series of trapezoids that lie above the intervals  

{[𝑥𝑘 , 𝑥𝑘+1]}. Here, we consider a generalized form of trapezoidal rule to approximate the fractional integral 

𝐽𝛼𝑓(𝑥) of order α > 0 by a weighted sum of function values at specified points. 

Theorem 2: [35] Given that the interval [0, a] is subdivided into k subintervals [𝑥j, 𝑥j+1 ] of equal 

width ℎ = 𝑎/𝑘  by using the nodes 𝑥j= 𝑗ℎ, for  j= 0, 1,…, k. The modified trapezoidal rule is 

given as: 

𝑇(𝑓, ℎ, 𝛼) = ((𝑘 − 1)α + 1 – (k – α - 1) kα ) 
ℎ𝛼 𝑓(0)

Г(𝛼+2)
 + 

ℎ𝛼𝑓(𝑎)

Г(𝛼+2)
 

+ ∑ ((𝑘−1
𝑗=1 k – j + 1)α + 1 - 2(k – j)α+1 + (k – j – 1)α + 1 ) 

ℎ𝛼𝑓(𝑥𝑗)

Г(𝛼+2)
         (16) 

this gives an approximation to fractional integral 

(𝐽𝛼𝑓(𝑥))(𝑎) = 𝑇(𝑓, ℎ, 𝛼) − 𝐸𝑇(𝑓, ℎ, 𝛼),    𝑎 > 0,   𝛼 > 0.          (17) 

Proof: From definition (7) we have 

(𝐽𝛼𝑓(𝑥))(𝑎) =  
1

Г(𝛼)
∫ (𝑎 − 𝜏)𝛼−1𝑓(𝜏)𝑑𝜏.

𝑎

0
                         (18) 

If 𝑓𝑘 is the piecewise linear interpolant for 𝑓 whose nodes are chosen at the nodes 𝑥𝑗, 𝑗 =  0, 1, 2, . . . , 𝑘, 

then, we have 

∫ (𝑎 − 𝜏)𝛼−1𝑎

0
𝑓𝑘(𝜏)𝑑𝜏 =

𝒉𝜶

𝜶(𝜶+𝟏)
. {

((𝑘 − 1)𝛼+1 − (𝑘 − 𝛼 − 1)𝑘𝛼)𝑓(0) + 𝑓(𝑎)

+ ∑ ((𝑘 − 𝑗 + 1)𝛼+1 − 2𝑘−1
𝑗=1 (𝑘 − 𝑗)𝛼+1 + (𝑘 − 𝑗 − 1)𝛼+1)𝑓(𝑥𝑗)

        

           (19) 

and  

|∫ (𝑎 − 𝜏)𝛼−1𝑓(𝜏) −
𝑎

0 ∫ (𝑎 − 𝜏)𝛼−1𝑓𝑘
𝑎

0
(𝜏)𝑑𝜏| ≤ 𝐶𝛼‖𝑓′′‖∞𝑎𝛼ℎ2.           (20)       

from (19) and (20) we get Theorem 2, where 𝐶𝛼
′ =

𝐶𝛼
𝛤(𝛼)⁄ . 

If  α =1 the modified trapezoidal rule reduces to the classical trapezoidal rule (3). This method behaves in 

a way that is comparable to the classical trapezoidal rule. It is well established that, for small ℎ, using the 

central-difference formulas [36], [37] and [38] we can approximate the integral. The two-point and three-

point central difference formula for 𝑓(𝑥𝑗) are given as: 

𝑓(𝑥𝑗)  =  
𝑓(𝑥𝑗+ℎ)+𝑓(𝑥𝑗−ℎ)

2
 + 𝑂(ℎ)          (21) 
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𝑓(𝑥𝑗)  =  
𝑓(𝑥𝑗+2ℎ)+𝑓(𝑥𝑗−2ℎ)

2
 + 𝑂(ℎ)          (22) 

This can also be extended to give  

𝑓(𝑥𝑗)  =  
𝑓(𝑥𝑗+𝑛ℎ)+𝑓(𝑥𝑗−𝑛ℎ)

2
 + 𝑂(ℎ)           (23) 

where 𝑛 is any real number. 

3 Theory/calculation  

Example 1.: Approximate the fractional integral of the function 𝑓(𝑥) = 𝑐𝑜𝑠𝑥, given that 𝛼 is = 
3

4
 

Table 1: The modified trapezoidal rule for (𝐽0.75𝑐𝑜𝑠𝑥)(1) 

Tables 1 gives the approximated values for the fractional integral (𝐽𝛼𝑓(𝑥))(1) when 𝛼 is = 
3

4
  using the 

modified trapezoidal rule (16). With the exact solution which is the true value of the fractional integral given 

as (10). 

 

Example 2.: Solve the function 𝑓(𝑥) = 𝑐𝑜𝑠𝑥, when 𝛼 is = 1.  

Table 2: The modified trapezoidal rule for (𝐽1𝑐𝑜𝑠𝑥)(1) 

K h    Exact  Value 𝑻(𝒇, 𝒉, 𝟏) at 2 

point cent. diff. 

𝑻𝑻(𝒇, 𝒉, 𝟏) 𝑻(𝒇, 𝒉, 𝟏) at 3 

point cent. diff. 

𝑻𝑻(𝒇, 𝒉, 𝟏) 

10                                                     0.1 0.841470985 0.836569296 0.004901689 0.824010226 0.017460759 

20                               0.05 0.841470985 0.840244271 0.001226714 0.837092697 0.004378288 

40                               0.025 0.841470985 0.841164225 0.000306759 0.840375593 0.001095392 

80                               0.0125 0.841470985 0.841394290 0.000076695 0.841197086 0.000273899 

160                             0.00625 0.841470985 0.841451811 0.000019174 0.8414025068 0.000068478 

320                             0.003125 0.841470985 0.841466191 0.000004794 0.841453865 0.000017120 

Tables 2.: This gives the approximated values for the fractional integral (𝐽𝛼𝑓(𝑥))(1) using (16) the 

modified trapezoidal rule and (10) gives the exact solution which is the true value of the fractional integral.  

K

  

h    Exact Value 𝑻(𝒇, 𝒉. 𝟎. 𝟕𝟓) at 

2 point cent. diff. 

𝑻𝑻(𝒇, 𝒉, 𝟎. 𝟕𝟓) 𝑻(𝒇, 𝒉, 𝟎. 𝟕𝟓) at 

3 point cent. diff. 

𝑻𝑻(𝒇, 𝒉, 𝟎. 𝟕𝟓) 

10                                                     0.1 0.874344373 0.869256566 0.005087807 0.856206776 0.018137597 

20                               0.05 0.874344373 0.873070571 0.001273802 0.869795873 0.004548500 

40                               0.025 0.874344373 0.874025757 0.000318616 0.873206315 0.001138058 

80                               0.0125 0.874344373 0.874264701 0.000079672 0.874059793 0.000284580 

160                             0.00625 0.874344373 0.874324453 0.000019920 0.874273223 0.000071150 

320                             0.003125 0.874344373 0.874339393 0.000004980 0.874326585 0.000017788 
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Example 3.: Approximate the function 𝑓(𝑥) = 𝑐𝑜𝑠𝑥, when 𝛼 is = 1.25 

Table 3: The modified trapezoidal rule for (𝐽1.25𝑐𝑜𝑠𝑥)(1) 

K h    Exact  Value 𝑻(𝒇, 𝒉, 𝟏. 𝟐𝟓) at 

2 point cent. diff. 

𝑻𝑻(𝒇, 𝒉, 𝟏. 𝟐𝟓) 𝑻(𝒇, 𝒉, 𝟏. 𝟐𝟓) at 

3 point cent. 

Diff 

𝑻𝑻(𝒇, 𝒉, 𝟏. 𝟐𝟓) 

10                                                     0.1 0.767202941 0.762733425 0.004469516 0.751282822 0.015920119 

20                               0.05 0.767202941 0.766084441 0.001118501 0.763211024 0.003991917 

40                                0.025 0.767202941 0.766923250 0.000279691 0.766204222 0.000998719 

80                               0.0125 0.767202941 0.767133015 0.000069927 0.766953216 0.000249726 

160                             0.00625 0.767202941 0.767185460 0.000017482 0.767140507 0.000062434 

320                             0.003125 0.767202941 0.767198571 0.000004370 0.767187333 0.000015609 

Tables 3.: gives the approximated values for the fractional integral (𝐽𝛼𝑓(𝑥))(1) when 𝛼 is = 1.25  using 

the modified trapezoidal rule (16). With the exact solution which is the true value of the fractional integral 

given as (10). 

4 Results and Discussion  

In example one, we solved the function 𝑓(𝑥) = 𝑐𝑜𝑠𝑥 when 𝛼 is = 
3

4
 and then used the modified trapezoidal 

rule in conjunction with the two-step and three-step central difference formula to approximate the 

fractional integral when 𝛼 is = 
3

4
. Table 1 shows the numerical values and errors when compared with the 

exact solution and  figure 1 gives the exact and approximate solutions of example 1 for table 1 at alpha = 
3

4
  

and how it converges to the exact solution as the step size decreases while figure 2 shows the absolute error 

function of example 1 for Table 1 at alpha = 
3

4
. Similarly, the second and third example evaluates the integral 

function 𝑓(𝑥) = 𝑐𝑜𝑠𝑥 at 𝛼 =   1.0 and 1.25 respectively.  

 

Figure 1: Exact and approximate solutions of example 1 for table 1 at alpha = 
3

4
 . 
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Figure 2: Absolute error function of example 1 for Table 1 at alpha = 
3

4
. 

5 Conclusion 

We have successfully applied the modified trapezoidal rule to approximate fractional integrals of functions, 

in each case we try to solve problems for which the analytic solution is available. This approach gives us 

the ability of measuring the accuracy of our method. The results obtained using the scheme presented here, 

are in full agreement with other methods and solvers and the analytical solutions confirm the efficiency and 

effectiveness of the method. Where no other method is possible the modified trapezoidal rule is used for 

definite integrals, it also applies to approximating differential equations even a more general system of 

differential and algebraic equations and medical science [39]. It was observed however, that the accuracy of 

the method strictly depends on the step size(ℎ).  
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